六年级数学考试必考知识点归纳

|业鸿

小学六年级是小学的毕业阶段,这时候应该要总结好六年级的数学知识点,下面是小编为大家整理的关于六年级数学考试必考知识点归纳,欢迎大家来阅读。

六年级数学考试必考知识点归纳

六年级数学知识点归纳整理

第一单元 圆

1、使学生认识圆的特征:圆的半径、直径、圆心。认识在同圆内半径和直径的关系。知道圆是轴对称图形,有无数条对称轴,而这些对称轴都过圆心。知道生活中有了圆才使我们的生活更美好。

2、认识同心圆、等圆。知道圆的位置由圆心决定,圆的大小由半径或直径决定。等圆的半径相等,位置不同;而同心圆的半径不同,位置相同。

3、使学生知道圆的周长和圆周率的含义,掌握圆的周长的计算公式,能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。在运用上,要能根据圆的周长算直径或半径,会算半圆的周长:圆的周长×1/2+直径。会求组合图形的周长。

4、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

5、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。会灵活运用圆的面积公式。已知圆的周长会算圆的面积,会求组合图形的面积。会算圆环的面积,并且知道在周长相等的情况下,正方形、长方形、圆三种图形中,圆的面积最大。

6、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

第二单元 百分数的应用

本单元重点讲解百分数在生活中的应用,知识点为:

1、知道百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。百分数通常不写成分数形式,而用百分号“%”表示;百分数有时也定义为分母是100的分数,但百分数与分数是有区别的:分数既可表示具体的量,又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数,也就是不能带单位的数。

2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

3、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用,会计算这种百分数。

5、知道成数、打折的含义。表示一个数是另一个数十分之几、百分之几的数,叫做成数。打折就是按原价的百分之几十、十分之几出售。八五折就是按原价的85%出售。成数和折扣数不能用小数表示。

6、能解决“比一个数增加百分之几的数是多少”或“比一个数减少百分之几的数是多少”的实际问题。

7、进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题,会解含有百分数的方程。

8、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。知道利息是本金存入银行过一段时间取出后多出来的钱;本金是存入银行的钱;利率就是某段时间中利息占本金的百分比;利息税是国家银行规定的针对利息收入的税收。会计算利息。利息=本金×利率×时间

9、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

第三单元 图形的变换

1、通过观察、操作、想象,知道一个简单图形是怎样经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。并能借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的'变换过程。

2、能利用七巧板在方格纸上变换各种图形。能运用图形的变换在方格纸上设计美丽的图案,进一步体会平移、旋转和轴对称在设计图案中的作用。

3、欣赏图案,感受图形世界的神奇。通过生活中有趣而美丽的图案,认识数学的美,体会图形世界神奇。

第四单元 比的认识

1、能从具体情境中抽象出比的过程,理解比的意义。

2、能正确读写比,会求比值,理解比与除法、分数的关系。

3、能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。

4、理解化简比的必要性,能运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

5、能运用比的意义解决按照一定的比进行分配的实际问题,提高解决实际问题的能力。

拓展能力:能用求比值的方法化简比。

第五单元 统计

1、知道复式条形统计图、复式折线统计图的特点,理解单式与复式统计图的异同,并能在有纵轴、横轴的图上用复式条形统计图、复式折线统计图表示相应的数据,体会数据的作用。

2、能看懂复式条形统计图,并能根据复式条形统计图中的有关数据作简单的分析,判断和预测。

3、会进行数据的收集与整理。并通过数据分析发现问题,从而决定用什么什么统计图来描述数据。

第六单元 观察物体

1、能正确辨认从不同方向(正面、側面、上面)观察到的立体图形(5个小正方体组合)的形状,并能画出草图。

2、能根据从正面、側面、上面观察到的平面图形还原立体图形,进一步体会从三个方面观察就可以确定立体图形的形状,能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围。

3、给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点、观察角度的变化而变化,并能利用所学的知识解释生活中的一些现象。

六年级数学知识点大全

1、积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

2、几何图形计算公式

(1)周长:即围绕物体一周的长度。

①长方形周长=(长+宽)×2 =(a+b)×2

②正方形周长=边长×4 =4a

③圆的周长=圆周率×直径=圆周率×半径×2 =πd =2πr

(2)面积:即物体的表面或封闭图形的大小

①长方形的面积=长×宽 S=ab

②正方形的面积=边长×边长 S=a•a=a²

③平行四边形的面积=底×高 S=ah

④三角形的面积=底×高÷2 S=ah÷2

⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

⑥圆的面积=圆周率×半径S=πr²

⑦直径d=2r 半径=直径÷2 r= d÷2

3、相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

一个人的速度=相遇路程÷相遇时间-另一个人的速度

4、平均速度问题

平均速度=总路程÷(顺流时间+逆流时间)

注意:折(往)返=路程×2

5、利息问题

利息=本金×年利率×时间(年)=本金×月利率×时间(月)

税后利息=本金×利率×时间×(1-5%)

6、比例尺=图上距离÷实际距离

实际距离=图上距离÷比例尺

图上距离=实际距离×比例尺

7、分数乘法意义:

(1)、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

(2)、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

8、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

9、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

10、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

六年级数学复习知识点

1、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

3、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

4、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

5、纯小数:整数部分是零的小数,叫做纯小数。例如:0.25 、 0.368都是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如:3.25 、5.26都是带小数。

6、有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7 、 25.3 、 0.23都是有限小数。

7、无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 …… 3.1415926 ……

8、无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:π。

9、循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

10、0既不是正数,也不是负数,它是正数和负数的分界。0大于负数,小于正数。负数比较大小时,不考虑负号,数字大的数反而小。

11、“+”可以省略不写,“-”不能省略。

12、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。数轴上0左边的数都是负数,0右边的数都是正数。从左到右逐渐变大,最大负整数-1 最小正整数1。

13、表示两个比相等的式子叫做比例。如:2:1=6:3。

14、在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6。

15、解比例 :根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x = 4:,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。

16、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定) 例如:速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

17、成反比例的量 :两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定) 例如:路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

18、比例尺=图上距离:实际距离;实际距离=图上距离÷比例尺;图上距离=实际距离×比例尺。

    515333