人教版圆的面积教学设计

|育祥

教学设计需要根据学科性质、学生的学习特点和目标要求进行合理的安排和选择。现在随着小编一起往下看看人教版圆的面积教学设计,希望你喜欢。

人教版圆的面积教学设计

人教版圆的面积教学设计篇1

教学内容:

新人教版数学六年级上册第67—68页,圆的面积。

教学目标:

1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。

2、经历圆的面积计算公式的推导过程,体会转化的思想方法。

3、培养认真观察的习惯和自主探究、合作交流的能力。

教学重难点:

1、运用圆的面积计算公式解决实际问题。

2、理解圆的面积计算公式的推导过程。

教学准备:多媒体课件

教学方法:自主探究,合作交流

教学过程:

一、小测验:

1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。

2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。

二、问题引入

1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?

2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)

3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)

三、探索新知

(一)复习,平面图形面积的计算方法。

(二)探索圆面积的计算方法

1、我们一起来推导圆的面积公式吧!

2、利用多媒体课件展示圆的面积公式的推导过程。

(1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。

(2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。

3、在图形的拼凑与转化中,同时观察与思考以下问题。

a、拼凑中,圆在转化成什么图形?

b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?

4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)

因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)

如果用s表示圆的.面积,那么圆的面积计算公式就是S= πr2

5、学生齐读公式

S= πr2

教师强调r2= r × r(表示2个r相乘)

(三)应用公式

一个圆的半径是4厘米。它的面积是多少平方厘米?

思考:

1、本题已知什么,要求什么?已知圆的半径,求圆的面积。

2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,

3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。

1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?

2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。

3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。

4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。

(四)知识应用

1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。

课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。

2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。

3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。

四、课堂总结:这节课,你有哪些收获?

说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。

五、作业布置:

教材第71页,练习十五,第1题~第4题。

人教版圆的面积教学设计篇2

教学内容:

人教版《义务教育课程标准实验教科书·数学》六年级上册67—69页。

教学目标:

知识目标:

理解圆面积的含义,让学生经历和体验圆的面积公式推导过程,通过操作、观察、、引导学生推导并掌握圆面积的计算公式,解答一些简单的实际问题。

能力目标:

培养学生观察、分析、类比、推理和概括的能力,发展学生的空间观念,并渗透极限、转化,化曲为直等数学思想方法。

情感目标:

通过小组合作交流,培养学生的合作精神和创新意识,动手实践和数学交流的能力,体验数学探究的乐趣和成功。

教学重点:

掌握并理解圆面积的计算公式。

教学难点:

引导学生用多种方法推导概括圆面积公式。

教学准备:

圆纸片、剪刀、胶棒,实物投影 , 多媒体课件。

教学过程:

一、创设情境,引出问题

课件演示:(牛吃草)看到这个画面,你能获得哪些数学信息?那牛吃到草的面积是多少你知道吗?这节课我们大家就一起来探讨圆的面积。)(板书课题)

二、回顾旧知,孕优新知

在研究圆面积前我们先来做个思维训练,回顾以前学过的关于圆的知识。请同学们拿出圆纸片,找到你了解的知识,并用字母表示它们的名称。(课件演示)

以前我们推导平面图形面积公式时都用到一种数学方法---转化法,就是让新知识转化为旧知识,利用已有的知识来研究新知识。

三、研究新知,加深理解

1、课本上就用这种转化法来推导圆面积公式的。大家仔细阅读一下课文,看看你们小组能学到什么,还有什么问题需要大家一起来帮你解决呢?(强调分成偶数等份)

出示自学提纲:

(1)什么叫圆的面积?

(2)书上是怎样推导圆面积的?

(3)为什么是近似的平行四边形?

2、 小组合作学习:同学们已经有了自己的研究方法,可以利用一些学具开始探究。可以独立研究,也可以和有相同想法的同学自由合作。研究的过程可能会有困难,老师相信你们,一定不怕困难勇于探索,遇到问题也可以向老师寻求帮助。

出示小组合作学习提纲:(指生读)

(1)你摆的是什么图形?

(2)你摆的图形的面积与圆的面积有什么关系?

(3)所摆图形的各部分相当于圆的什么?

(4)你是如何推导出圆的面积的?圆的面积公式是什么?

(5)你能不能转化成其它图形推导圆面积公式?

(你想把圆转化成什么图形)

3、哪个小组愿意把你们的研究成果给大家展示一下?

请大家关注同学们的发言,从中你一定会受到启发或发现问题。

小组汇报:①分成4份。②分成8份③分成16份(学生叙述拼的过程,教师板书推导公式)

4、我们回忆一下圆的面积公式是怎样推导出来的? (指生叙述)

如果给你一个圆,你能求出它的面积吗?(举起一个圆)谁能求出这个圆的面积?那如果给你具体数据,你们想要什么具体数呀?都要几个?(你的贪心还不小呢!幸好没要面积,那样就不用计算了。如果让你随便挑,你要哪个数据?)能说说要半径的理由吗?(你还真会找捷径)那如果老师只给你周长怎么办啊?(根据周长公式求半径)看来,求圆面积的关键条件是什么?(半径)那我们再来读一遍公式好吗?

好,同学们还记得课前那头正在吃草的小牛吗?让我们一起来算一算它最多能吃多少草好吗?(课件演示)

(2)如果给出直径你会算吗?出示例1。(指生读题)

四、巩固深化,实际应用

(1)不错,那老师要看看谁的反映最灵活计算能力最强(口答:给半径、直径求面积)。

(2)非常好,谁来给大家读读这道题(应用题:给周长求面积)

(3)拿出课前折叠的圆形纸片,自己动手测量所需的数据后计算圆的面积。互相说说计算圆面积的依据是什么?

(4)智力冲浪:假如这块地真的送给你,你打算怎样为自己设计一个美丽的家园?

五、发散思维,拓展知识

小组合作学习中还有一个问题是吧?好,哪个小组拼出了和大家不同的图形?(可以拼出近似三角形、平行四边形、梯形。将学生的研究结论贴在黑板上)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨好吗?

六、总结反思,课外延伸

好了今天这节课我们就到这里,你觉得自己今天表现怎么样?你觉得同学们的表现怎么样?你觉得老师表现怎么样?课堂上你高兴吗?这么高兴的一堂课你都有什么收获啊?

圆面积教学反思:

圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的

自主探究创造条件。

1. 让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。

2.引导学生主动探究。学生以小组为单位,通过合作拼摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。

3. 数学源于生活,服务于生活。我利用一张丢失了圆形井盖的图片引入,创设情景,让学生从中发现问题;当推导出圆面积的公式后,我又引导学生利用自己推导出的公式解决刚才的问题。在整个教学过程中,始终以这个情景组织教学。让学生知道数学来源于生活,服务于生活,数学就在我们的身边。整个学习过程不仅是一个主动学习的过程,更是一个“猜想——验证”的过程,一个发现学习、创造学习的过程。学生在观察、猜测、操作、验证、归纳的过程中理解了一个数学问题是怎样提出的,一个结论是怎样猜测和探索的,学生学会的不仅仅是一个数学公式,更重要的是学生学会了合作、交流,学会了像科学家一样进行思考、研究,学生的探索、创新精神得到了落实

人教版圆的面积教学设计篇3

目标预设:

1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。

教学过程:

一、引导估计,初步感知。

1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?

2、估计圆面积大小与半径的关系。

师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?

二、动手操作,共同探索。

1、引发转化,形成方案。

(1)我们如何推导三角形,平行四边形,梯形的面积公式的?

(2)准备如何去推导圆的面积?

2、动手操作,共同探究

(1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?

(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。

(3)比较:与刚才老师拼成的图形有何不同?

(4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?

如果一直这样分下去,拼成的图形会怎么样?

3、引导比较,推导公式。

圆与拼成的长方形之间有何联系?

引导学生从长方形的面积,长宽三个角度去思考。

根据学生回答,相机板书。

长方形的面积=长×宽

↓↓↓

圆的面积=∏rr

=∏r

追问:课始我们的估算正确吗?

求圆的面积一般需要知道什么条件?

三、应用公式,解决问题

1、基本训练,练练应用公式,求圆的面积。

2、解决问题

(1)出示例9,引导学生理解题意。

要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?

(2)学生计算

(3)交流,突出5平方的计算

四、巩固练习

1、练习十九1求课始出示的光盘的面积

2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?

五、这节课你有什么收获?你认为重点的

地方有哪些?

引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)

六、课堂作业

补充习题51页2、3、4题

拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。

圆的面积是多少平方厘米?

反思:

1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。

2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。

3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。

人教版圆的面积教学设计篇4

【教学内容】:

义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

【教学目标】:

知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

过程与方法:

(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

【教具准备】:

多媒体课件,圆片等。

【教学方法】:自主探究法

【教学过程】:

一.以旧引新、导入新课

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下三角形的面积公式是怎样推导的?

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

二、动手实践、探索新知

1、补充感知、理解意义

(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

(2)同学们再用手指一指自己带来的圆的面积。

(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

2、比较猜测、探明方向

(1)提问:猜猜圆面积的大小与什么有关?

(2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

(3)活动要求:折一折手中的圆片能折出什么图形?

(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

①圆和(近似的)长方形有什么关系?(形状变,面积相等)

②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

3、圆的面积计算公式的推导。

小组合作讨论以下问题:

a、拼成的近似长方形的面积和圆的面积有什么关系?

b、长方形的长与圆的周长有什么关系?

c、长方形的宽与圆的半径有什么关系?

d、你能找出圆的面积计算方法吗?

长方形的面积=长×宽,

所以圆的面积=()×()=()

学生在小组内积极讨论,探究、分析,并将结果汇报。

长方形的长是圆周长的一半,长方形的宽是半径(r)

因为长方形的面积=长×宽

所以圆的面积=∏r×r=r

齐读公式S=∏r强调r=r×r(表示2个r相乘)

同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.

三、巩固运用、形成技能

1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?

2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?

(1)课件出示例1

(2)学生独立审题

(3)教师板演解答过程.

3、求下面圆的面积r=3md=5cm

①学生独立完成

②集体核对时,强调要先算平方再算乘法。

4、判断题(课件出示)

5、拓展练习:机动题

小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??

四、课堂总结、深化认知:这节课,你有哪些收获?

五、作业:练习十六2.4题.

附:板书

圆的面积

长方形面积=长×宽

↓↓↓

圆的面积=圆周长的一半×半径

=∏r×r

=∏r

例1:r:20÷2=10(m)

S:3.14×102=314(m2)

答:它的面积是314m2。

人教版圆的面积教学设计篇5

教学目标:

知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

能力目标:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。

教学重点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

教学难点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

教学过程:

一、创设情境,提出问题。

1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?

2. 这个圆形的面积指的是哪部分呢?

3. 今天这节课我们就来学习圆的面积。(板书:圆的面积)

二、探究思考,解决问题。

1.请大家估计半径为5米的圆面积大约是多大?

2.用数方格的方法求圆面积大小

①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

②指明反馈估算结果,并说明估算方法及依据。

3.在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

三、探索规律

1.大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?

2.那么圆形的面积可由什么图形面积得来呢?

3.拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?

4.同学们操作,教师巡视.

5..大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形?

6.你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。

①因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

7用字母怎么表示圆面积公式呢?

四、应用圆面积公式

1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。

2.第18页第1题

学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。

3. 第18页第2题

让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。

板书设计:

圆的面积

平行四边形面积=底×高,

圆形面积公式=圆周长的1/2×半径

圆形面积公式=圆周率圆×半径2

人教版圆的面积教学设计篇6

教材分析:

圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。教材将理解“化曲为直”的转化思想贯穿在活动之中。通过一系列的活动将新的数学思想纳入到学生原有的认知结构之中,从而完成新知的建构过程。学好这节课的知识,对今后进一步探究“圆柱圆锥”的体积起着举足轻重的作用。

【教学目标】

1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

【教学重点】

探索并掌握圆的面积公式。

【教学难点】

探索推导圆的面积公式,体会“化曲为直”思想。

【教具准备】

投影仪,多煤体课件,圆形纸片。

【学具准备】

圆形纸片。

【教学设计】

一、创设情境。提出问题

(投影出示p16中草坪喷水插图)这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

二、探究思考。解决问题

1、估计圆面积大小

师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)——————

2、用数方格的方法求圆面积大小

①投影出示p16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

②指明反馈估算结果,并说明估算方法及依据。

1、根据圆里面的正方形来估计

2、用数方格的方法来估计。

三、探索规律

1、由旧知引入新知

师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?(学生回答,教师订正。那么圆形的面积可由什么图形面积得来呢。

2、探索圆面积公式

师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

指名汇报(学生在说的同时教师注意板书)

请大家来观察一下刚才拼成的哪个图形更接近长方形呢?[等分为32份的更接近长方形。]

想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?[等分的份数越多,就越接近长方形。]

观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)

因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

用字母怎么表示圆面积公式呢?

s=∏rr还可以写作s=∏r

师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。

3、应用圆面积公式

根据下面的条件,求圆的面积。

r=6厘米d=0、8厘米r=1、5分米

师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。(学生独立解答,指名回答)

四:拓展应用

习题设计:

1、填空:

(1)圆的周长计算公式为( ),圆的周长计算公式为( )。

(2)一个圆的半径是3厘米,求它的周长,列式( ),求它的面积,列式( )。

(3)一个圆的周长是18.84分米,这个圆的直径是( )分米,面积是( )平方分米。

2、判断:

(1)半径是2厘米的圆,周长和面积相等( )[让孩子知道得数虽然相同,但计量单位不同,不能进行比较。]

(2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14x1.52=3.14x3=9.42平方厘米。( )。[此题在计算1.52的时候把1.52看作1.5x2,而1.52=1.5x1.5]

(3)直径相等的两个圆,面积不一定相等。( )

(4)一个圆的半径扩大3倍,面积也扩大3倍。( )

(5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。( )

3、实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?

4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

(1)可测圆的半径,根据s=πr求出面积。

(2)可测圆的直径,根据s=π(d/2)2求出面积。

(3)可测圆的周长,根据s=π·(c/2π)2求出面积。

实践练习:

圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?[让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔

    615495