对数与对数运算教学设计
教学设计需要以学生为中心,关注学生的学习需求和兴趣爱好。教师应根据学生的现有知识水平和学习特点,设计适合他们的教学活动和任务,以促进他们的参与度和学习动力。现在随着小编一起往下看看对数与对数运算教学设计,希望你喜欢。
对数与对数运算教学设计【篇1】
一、教材的本质、地位与作用
对数函数(第二课时)是2006人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用.
二、教学目标
根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:
学习目标:
1、复习巩固对数函数的图像及性质
2、运用对数函数的性质比较两个数的大小
能力目标:
1、 培养学生运用图形解决问题的意识即数形结合能力
2、学生运用已学知识,已有经验解决新问题的能力
3、 探索出方法,有条理阐述自己观点的能力
德育目标:
培养学生勤于思考、独立思考、合作交流等良好的个性品质
三、教材的重点及难点
对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小
教学中将在以下2个环节中突出教学重点:
1、利用学生预习后的心得交流,资源共享,互补不足
2、通过适当的练习,加强对解题方法的掌握及原理的理解
另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。 所以确定本节课难点:同真异底的对数比大小
教学中会在以下3个方面突破教学难点:
1、教师调整角色,让学生成为学习的主人,教师在其中起引 导作用即可。
2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。
3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
四、学生学情分析
长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。
学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。
五、教法特点
新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
六、教学过程分析
1、课件展示本节课学习目标
设计意图:明确任务,激发兴趣
2、温故知新(已填表形式复习对数函数的图像和性质)
设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。
3、预习后心得交流
1) 同底对数比大小
2) 既不同底数,也不同真数的对数比大小
以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固
设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。
4、合作探究——同真异底型的对数比大小
以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。
设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。
5、小结
以学生自主小结的方式总结本节课得收获,教师可引导小结三个方面:所学内容、数学思想、数学方法
6、思考题
以2009高考题为例,让学生学以致用,增强数学学习兴趣。
7、作业
包括两个方面:
1、书写作业
2、下节课前的预习作业
七、教学效果分析
通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。
对数与对数运算教学设计【篇2】
一、教学目标
1、知识与技能
(1)理解对数的概念,了解对数与指数的关系;
(2)能够进行指数式与对数式的互化;
(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;
2、过程与方法
3、情感态度与价值观
(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析
分析、严谨认真的良好思维习惯和不断探求新知识的精神;
(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;
(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、
探索发现、科学论证的良好的数学思维品质、
二、教学重点、难点
教学重点
(1)对数的定义;
(2)指数式与对数式的互化;
教学难点
(1)对数概念的理解;
(2)对数性质的理解;
三、教学过程:
四、归纳总结:
1、对数的概念
一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。
2、对数与指数的互化
ab=n?logan=b
3、对数的基本性质
负数和零没有对数;loga1=0;logaa=1对数恒等式:alogan=n;logaa=nn
五、课后作业
课后练习1、2、3、4
六、板书设计
对数与对数运算教学设计【篇3】
1教学目标
1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。
2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
3、通过学生分组探究进行活动,掌握对数的重要性质。通过做练习,使学生感受到理论与实践的统一。
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。
2学情分析
现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的'信心不足,对数学存在或多或少的恐惧感。通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
3重点难点
重点 :
(1)对数的概念;
(2)对数式与指数式的相互转化。
难点 :
(1)对数概念的理解;
(2)对数性质的理解。
4教学过程
4.1第一学时
教学活动 活动1【导入】创设情境 引入新课
引例(3分钟)
1、一尺之棰,日取其半,万世不竭。
(1)取5次,还有多长?
(2)取多少次,还有0.125尺?
分析:
(1)为同学们熟悉的指数函数的模型,易得
(2)可设取x次,则有
抽象出:
2、__年我国GPD为a亿元,如果每年平均增长8%,那么经过多少年GPD是__年的2倍?
分析:设经过x年,则有
抽象出:
活动2【讲授】讲授新课
一、对数的概念(3分钟)
一般地,如果a(a>0且a≠1)的b次幂等于N, 就是 =N 那么数 b叫做 a为底 N的对数,记作 ,a叫做对数的底数,N叫做真数。
注意:①底数的限制:a>0且a≠1
②对数的书写格式
二、对数式与指数式的互化:(5分钟)
幂底数 ← a → 对数底数
指数 ← b → 对数
幂 ← N → 真数
思考:
①为什么对数的定义中要求底数a>0且a≠1?
②是否是所有的实数都有对数呢?
负数和零没有对数
三、两个重要对数(2分钟)
①常用对数:
以10为底的对数 ,简记为: lgN
②自然对数:
以无理数e=2.71828…为底的对数的对数
简记为: lnN . (在科学技术中,常常使用以e为底的对数)
注意:两个重要对数的书写
课堂练习(7分钟)
对数与对数运算教学设计【篇4】
对数是什么
在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的.情况下,乘数中的对数计数因子。一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=loga N。其中,a叫做对数的底数,N叫做真数。
对数与对数运算教学设计【篇5】
对数
教学目标
1.理解对数的概念,掌握对数的运算性质.
(1) 了解对数式的由来和含义,清楚对数式中各字母的取值范围及与指数式之间的关系.能认识到指数与对数运算之间的互逆关系.
(2) 会利用指数式的运算推导对数运算性质和法则,能用符号语言和文字语言描述对数运算法则,并能利用运算性质完成简单的对数运算.
(3) 能根据概念进行指数与对数之间的互化.
2.通过对数概念的学习和对数运算法则的探究及证明,培养学生从特殊到一般的概括思维能力,渗透化归的思想,培养学生的逻辑思维能力.
3.通过对数概念的学习,培养学生对立统一,相互联系,相互转化的思想.通过对数运算法则的探究,使学生善于发现问题,揭示数学规律从而调动学生思维的积极参与,培养学生分析问题,解决问题的能力及大胆探索,实事求是的科学精神.
教学建议
教材分析
(1) 对数既是一个重要的概念,又是一种重要的运算,而且它是与指数概念紧密相连的.它们是对同一关系从不同角度的刻画,表示为当 时, .所以指数式 中的底数,指数,幂与对数式 中的底数,对数,真数的关系可以表示如下:
(2) 本节的教学重点是对数的定义和运算性质,难点是对数的概念.
对数首先作为一种运算,由 引出的,在这个式子中已知一个数 和它的指数求幂的运算就是指数运算,而已知一个数和它的幂求指数就是对数运算(而已知指数和幂求这个数的运算就是开方运算),所以从方程角度来看待的话,这个式子有三个量,知二求一.恰好可以构成以上三种运算,所以引入对数运算是很自然的,也是很重要的,也就完成了对 的全面认识.此外对数作为一种运算除了认识运算符号“ ”以外,更重要的是把握运算法则,以便正确完成各种运算,由于对数与指数在概念上相通,使得对数法则的推导应借助指数运算法则来完成,脱到过程又加深了指对关系的认识,自然应成为本节的重点,特别予以关注.
对数运算的符号的认识与理解是学生认识对数的一个障碍,其实 与+, 等符号一样表示一种运算,不过对数运算的符号写在前面,学生不习惯,所以在认识上感到有些困难.
教法建议
(1)对于对数概念的学习,一定要紧紧抓住与指数之间的关系,首先从指数式中理解底数 和真数 的要求,其次对于对数的性质 及零和负数没有对数的理解也可以通过指数式来证明,验证.同时在关系的指导下完成指数式和对数式的互化.
(2)对于运算法则的探究,对层次较高的学生可以采用“概念形成”的学习方式通过对具体例子的提出,让形式的认识由感性上升到理性,由特殊到一般归纳出法则,再利用指数式与对数式的关系完成证明,而其他法则的证明应引导学生利用已证结论完成,强化“用数学”的意识.
(3)对运算法则的认识,首先可以类比指数运算法则对照记忆,其次强化法则使用的条件或者说成立的条件是保证左,右两边同时都有意义,因此要注意每一个对数式中字母的取值范围.最后还要让学生认清对数运算法则可使高一级的运算转化为低一级的运算,这样不仅加快了计算速度,也简化了计算方法,显示了对数计算的优越性.
教学设计示例
对数的运算法则
教学目标
1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题.
2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.
3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神.
教学重点,难点
重点是对数的运算法则及推导和应用
难点是法则的探究与证明.
教学方法
引导发现法
教学用具
投影仪
教学过程
一. 引入新课
我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.
如果看到 这个式子会有何联想?
由学生回答(1) (2) (3) (4) .
也就要求学生以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则.
二.对数的运算法则(板书)
对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则.
由学生回答后教师可用投影仪打出让学生看: , , .
然后直接提出课题:若 是否成立?
由学生讨论并举出实例说明其不成立(如可以举 而 ),教师在肯定结论的正确性的同时再提出
可提示学生利用刚才的反例,把 5改写成 应为 ,而32=2 ,还可以让学生再找几个例子, .之后让学生大胆说出发现有什么规律?
由学生回答应有 成立.
现在它只是一个猜想,要保证其对任意 都成立,需要给出相应的.证明,怎么证呢?你学过哪些与之相关的证明依据呢?
学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书.
证明:设 则 ,由指数运算法则
得
,
即 . (板书)
法则出来以后,要求学生能 从以下几方面去认识:
(1) 公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).
(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.
(3)若真数是三个正数,结果会怎样?很容易可得 .
(条件同前)
(4)能否利用法则完成下面的运算:
例1:计算
(1) (2) (3)
由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:
.
可由学生说出 .得到大家认可后,再让学生完成证明.
证明:设 则 ,由指数运算法则得
.
教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?
有的学生可能会提出把 看成 再用法则,但无法解决 计算问题,再引导学生如何回避 的问题.经思考可以得到如下证法
.或证明如下
,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)
请学生完成下面的计算
(1) (2) .
计算后再提出刚才没有解决的问题即 并将其一般化改为 学生在说出结论的同时就可给出证明如下:
设 则 , .教师还可让学生思考是否还有其它证明方法,可在课下研究.
将三条法则写在一起,用投影仪打出,并与指数的法则进行对比.然后要求学生从以下几个方面认识法则
(1) 了解法则的由来.(怎么证)
(2) 掌握法则的内容.(用符号语言和文字语言叙述)
(3) 法则使用的条件.(使每一个对数都有意义)
(4) 法则的功能.(要求能正反使用)
三.巩固练习
例2.计算
(1) (2) (3)
(4)(5) (6)
解答略
对学生的解答进行点评.
例3.已知 ,用 的式子表示
(1) (2) (3) .
由学生上黑板写出求解过程.
四.小结
1.运算法则的内容
2.运算法则的推导与证明
3.运算法则的使用
五.作业略
六.板书设计
二.对数运算法则 例1 例3
1. 内容
(1)
(2)
(3) 例2 小结
2. 证明
3. 对法则的认识 (1)条件 (2)功能
探究活动
试研究如下问题.
(1)已知 求证: 或
(2)若 都是正数且至少有一个不为1,且 ,则 之间的关系是_____________________.
答案:
(1)证明略
(2) 或 .
对数与对数运算教学设计【篇6】
对数与对数运算训练题
1.2-3=18化为对数式为
A.log182=-3 B.log18(-3)=2
C.log218=-3 D.log2(-3)=18
解析:选C.根据对数的'定义可知选C.
2.在b=log(a-2)(5-a)中,实数a的取值范围是()
A.a>5或a B.2<a<3或3<a<5
C.25 D.3<a<4
解析:选B.5-a>0a-2>0且a-21,2<a<3或3<a<5.
3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的是()
A.①③ B.②④
C.①② D.③④
解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.
4.方程log3(2x-1)=1的解为x=________.
解析:2x-1=3,x=2.
答案:2
1.logab=1成立的条件是()
A.a=b B.a=b,且b0
C.a0,且a D.a0,a=b1
解析:选D.a0且a1,b0,a1=b.
2.若loga7b=c,则a、b、c之间满足()
A.b7=ac B.b=a7c
C.b=7ac D.b=c7a
解析:选B.loga7b=cac=7b,b=a7c.
3.如果f(ex)=x,则f(e)=()
A.1 B.ee
C.2e D.0
解析:选A.令ex=t(t0),则x=lnt,f(t)=lnt.
f(e)=lne=1.
4.方程2log3x=14的解是()
A.x=19 B.x=x3
C.x=3 D.x=9
解析:选A.2log3x=2-2,log3x=-2,x=3-2=19.
5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为()
A.9 B.8
C.7 D.6
解析:选A.∵log2(log3x)=0,log3x=1,x=3.
同理y=4,z=2.x+y+z=9.
6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且1),则logx(abc)=()
A.47 B.27
C.72 D.74
解析:选D.x=a2=b=c4,所以(abc)4=x7,
所以abc=x74.即logx(abc)=74.
7.若a0,a2=49,则log23a=________.
解析:由a0,a2=(23)2,可知a=23,
log23a=log2323=1.
答案:1
8.若lg(lnx)=0,则x=________.
解析:lnx=1,x=e.
答案:e
9.方程9x-63x-7=0的解是________.
解析:设3x=t(t0),
则原方程可化为t2-6t-7=0,
解得t=7或t=-1(舍去),t=7,即3x=7.
x=log37.
答案:x=log37
10.将下列指数式与对数式互化:
(1)log216=4; (2)log1327=-3;
(3)log3x=6(x>0); (4)43=64;
(5)3-2=19; (6)(14)-2=16.
解:(1)24=16.(2)(13)-3=27.
(3)(3)6=x.(4)log464=3.
(5)log319=-2.(6)log1416=-2.
11.计算:23+log23+35-log39.
解:原式=232log23+353log39=233+359=24+27=51.
12.已知logab=logba(a0,且a1;b0,且b1).
求证:a=b或a=1b.
证明:设logab=logba=k,
则b=ak,a=bk,b=(bk)k=bk2.
∵b0,且b1,k2=1,
即k=1.当k=-1时,a=1b;
当k=1时,a=b.a=b或a=1b,命题得证.