鸡兔同笼教学设计

|育祥

教学设计还需要考虑不同学生的学习差异和个体需求,采用灵活多样的教学手段和教学策略,以满足学生的多样化学习需求,提供个性化的学习支持和指导。现在随着小编一起往下看看鸡兔同笼教学设计,希望你喜欢。

鸡兔同笼教学设计

鸡兔同笼教学设计【篇1】

教学内容:

北师大版数学五年级上册81页《尝试与猜测――鸡兔同笼》

教学目标:

1、通过学习帮助学生学会用列表法解决问题,能对数据进行再认识、再分析,将列表的过程更优化。

2、让学生经历尝试与猜测的过程,在探究的过程中提高学生分析问题解决问题的能力。

3、以古典名题《鸡兔同笼》为载体,让学生体验解决问题方法的多样化, 从而培养学生多种解题能力。

4、让学生了解到解决鸡兔同笼问题的方法在现实生活中的广泛应用,体会学习数学知识的价值。

教学重点:

让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略――列表。

教学难点:

体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

课前准备:多媒体课件。

教学过程:

一、游戏引入,渗透列举法

同学们,老师想和你们玩一个猜一猜的游戏,看看谁的反应快:1只鸡是两条腿;1只兔子是四条腿。那么:

1只鸡和5只兔子一共有几条腿?(22条腿)

2只鸡和4只兔子一共有几条腿?(20条腿)有什么简便算法吗?

3只鸡和3只兔子一共有几条腿?(18条腿)

4只鸡和2只兔子一共有几条腿?(16条腿)谁知道老师接下去会问什么问题?

5只鸡和1只兔子一共有几条腿?你怎么知道老师会问这个问题?

说说你是根据什么提出这个问题的?看看你能发现什么?

发现:

①鸡的只数逐渐增加,而兔的只数不断减少;不管怎样增加和减少,它们的总头数都是6个;(板书:6)

②鸡的只数在减少1只的同时,兔的只数就增加1只;

③随着鸡的只数减少,兔的只数增加,它们的腿数依次减少2条,为什么会这样呢?

你们的发现太有价值了,那么根据你们的发现,不用计算能不能推出5只鸡和1只兔子一共有几条腿?(14条腿)根据什么呢?谁来说说?

现在我们来看这个完整的表格:像这样列出表格逐一举出问题的所有情况,这种方法在数学上我们称为列举法。(板书:列举法)

【评析】教师创设了游戏情境引入,在增添学生学习兴趣的同时,减缓了新知识学习的坡度,通过游戏来渗透列举法,为下一步学生地自学奠定了基础。设计科学合理,符合学生的认知规律。

二、结合名题,讲授列举法

1、自主探索

在游戏中老师告诉了同学们鸡和兔的只数,你们很容易的求出它们的腿数;如果反过来,先告诉鸡和兔共有的头数和腿数,你能分别求出鸡和兔的只数吗?这就是记载在《孙子算经》上的中国古典名题:鸡兔同笼问题。(板书:鸡兔同笼)

听说过“鸡兔同笼”这个问题吗?会解答吗?老师希望你们能把自己的经验带到课堂上,帮助同学们解决这个问题,好吗?请看大屏幕:(课件出示)

【评析】课题引入巧妙,将数学知识灵活的反其道而行之,形成新的数学问题,这种逆向思维的演绎无形中也培养学生的逆向思维,为学生可持续发展打下基础。

[例]鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?

看懂题同学来帮同学们解释一下?明白题目的意思了吗?想不想自己尝试着解决这道古典名题?无从下手的同学可以仿照我们刚才接触过的列举法,希望老师帮忙的同学请举手示意。(学生自做,教师巡视)

2、比较梳理

老师看到同学们有好多做法,我们先来看看这种做法:(实物投影展示)

(1)列举法:

(出示①)先假设20个头中有1只鸡和19只兔子,看看它们腿数,然后逐一往下试,一直试到符合已知条件为止。

这种通过假设与列表格逐一列举、尝试,得出答案的方法,我们称它为逐一列举法(板书:逐一列举法)。也可假设兔子是1只、鸡是19只的做法如图:

有没有比这种方法再简单的呢?我们来看看这种做法②:。② ③

假设1只鸡19只兔时,我们看到腿的总数是78条,这说明兔子太多了,所以再举例时就假设鸡是5只,兔子15只,这时腿的总数是70只,兔子数还应减少,假设鸡是15只兔子5只时,腿的总数又少了,所以再增加兔子数,就这样不断的进行尝试,最后得出鸡有13只兔子有7只。

这种做法没有逐一举例,而是先估计鸡与兔数量的可能范围,这样可以减少举例的次数。谁能给这种列举法也起一个名字?(板书:跳跃列举法)同学们看看这种方法与第一种方法比较有什么优势?还有比这种方法更简单的列举法吗?(出示③取中列举法)大家把书翻到81页,看看淘气的想法。

现在请同学们观察书中三个表格,比较一下它们有什么共同点和不同点?哪种方法最好?为什么?对了,在学习数学中采用最简单的方法解决最复杂的题才是聪明之举啊。

关于列举法我们就研究到这,我们再来看看这些做法:

(2)假设法:

(20×4-54)÷(4-2)=13(只)…鸡 20-13=7(只)…兔

先假设20个头都是兔子的头,那么就有20×4=80条腿,比实际54条腿多了26条腿,为什么会这样呢?就是因为我们把鸡也看成兔了,如果用一只鸡来置换一只兔,就要减少4-2=2条腿,26条腿里有几个2条腿呢?26÷2=13,因此13是鸡的只数,而20-13=7只就是兔子的只数。

也可假设这20个头都是鸡的头数来计算:

(54-20×2)÷(4-2)=7(只)…兔20-7=13(只)…鸡

(3)列方程:

我们来看这种解法是否可行?这是什么方法?列方程的关键是什么?这道方程的等量关系是什么?

解:设有兔x只,则鸡则有(20-x)只。

4x+2(20-x)=54

4x+40-2x=54

2x=14

X=7…兔20-7=13(只)…鸡

设兔的只数为x,那么鸡有(20-x)只。根据它们的腿数54只为等量关系列出方程,方程的左面是兔的腿数加上鸡的腿数,方程的右面是他们腿数的总和,然后再解出来,用方程思考解题思路是顺向思维,比较好理解。

【评析】教师对于新授知识这个环节地处理,大胆独特。教师以“鸡兔同笼”这个知识为载体相继介绍了多种解题方法:假设法、列举法、列方程。借助一个知识点给孩子5种解题方法,这样的数学学习对孩子来说是大有益处的。教师地指导和学生地探索与自主学习相机结合,既开阔了学生学习数学知识的视野,又培养了学生学习数学的技能。

三、小结新课,深化鸡兔同笼问题

关于鸡兔同笼的问题我们可以用列举法、假设法、画图法和列方程等这么多的方法来解,其中列举法采取取中列举更为科学简便。不过生活中谁会将鸡和兔放在一个笼子里?即使放在一个笼子里又有谁会去数他们的脚呢?生活中有类似鸡兔同笼的问题吗?请看练习:

四、巩固联系

[练习1]一队猎人一队狗,两队并成一队走。数头一共是二十,数脚一共四十四。你知道猎人几个狗几只?

[练习2]小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?

[练习3]用大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?

【评析】教师在新课结束之后,没有结束“鸡兔同笼”问题的研究,而是在此基础上继续此类问题的研究,引导孩子不管什么问题只要抓住了“鸡兔同笼”的本质,就可以采取同一种解题方法。在讲授知识的同时,帮助学生总结一类事物的本质,潜移默化中训练学生对一些日常生活中的现象进行观察与思考,从中发现并体会一些特殊的规律。

五、总结全课,留有思考余地

出示我国古代数学名著《孙子算经》上的题目,想不想知道这本书是怎样解答这道题的?

脚数÷2-头数=兔数 头数-兔数=鸡数

课后同学们可以用这种方法口算一下我们做的练习题,并想想这种算法的道理是什么?看看我们古人的想法与我们的想法哪个更奇妙!

【评析】课堂的结尾让我们依然看到了与众不同的设计。教师放弃了固有的“总结模式”,而是把一个新的问题抛给学生作为课堂的结束,让学生在学后深思、反省、感悟。以“鸡兔同笼”为载体,弱化其具体解法,而由此及彼的数学联想则成为超越知识之上的更高的课堂教学追求。

【全课总结】

第一,以学论教的教学设计独具匠心 。本节课最大的一个亮点就是突破了教材的局限,大胆尝试,用一种全新的教学方法来诠释数学课堂教学。教师借助一个知识点来讲授多种解题方法,无形中培养了学生学习数学的能力。教师在备课时把教材和教参作为讲授知识的一个载体,而并非唯一依据,因此教师根据所教学生的实际情况,结合自身对教材地透彻理解,创造性地重组了教材,加以灵活地处理设计出独具匠心的教案,从例题的呈现、分析、讲解等方面突破了延续几十年的照本宣科的教法,对孩子数学知识地学习、学习能力地培养有很好的促进作用,较好地体现了教学活动的有效性和生动性。

第二,以生为本的教学过程自然流畅。随着对学生主体观的重新思考与定位,看一堂好课必需要看学生在课堂上的表现。本节课教师在课堂中创设了一种有利于学生发挥自身主体性的环境,通过课前精心设计与课堂中教师地恰当引导,构建一个流畅自然的教学过程。教师恰到好处地充分地利用了课堂生成的资源,实实在在地解决了课堂中出现地问题,在教师地引领下,学生亲历了知识地形成过程,举一反三地领悟了“鸡兔同笼”问题。教师“教不越位”,学生“学习到位”,真正处理好主体与主导的关系。

第三,以思维延伸为主线的课堂提问完美灵动。本节课教师在一节课里增大教学容量,尽可能多的给孩子提供学习的机会,在掌握知识的同时形成数学技能的训练,让学生在上完这节课后的很长一段时间,仍感觉回味无穷并有所得。现在的数学课堂教学基本是问答式的,用问题来作为课堂教学的主脉,必须有完美的设计,否则课堂教学的思路太单一。数学是逻辑性非常严密的学科,讲解数学与做数学题时思维一定要严密,应做到 “步步为营”、“丝丝相扣”,不仅让学生知道一道题的答案,更让学生知道这么做的目的,只有让学生对问题的理解达到一定的深度,学生才能形成一定的思维、推理能力,这也是做题的最终目的。

鸡兔同笼教学设计【篇2】

教学内容:

人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。

教材分析:

“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。

3、在解决问题的.过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。

教学重点:

1、理解掌握解决问题的不同思路和方法。

2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。

教学难点:

理解掌握假设法,能运用假设法解决数学问题。

教学具准备:

表格

教学过程:

一、导入

师生谈话导入新知

(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)

二、探究新知

1、质疑:提问:

(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?

(2)鸡和兔相比:什么比什么多?多多少?

(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?

(4)尝试解决,交流想法;

(5)出示交换已知条件以后的题目。

(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)

2、教学例1

(1)出示例题1。

师:请同学们读一读,和前面的题目一样吗?什么地方不一样?

请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)

(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)

(2)学生自由猜测。

师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。

(3)验证猜想。

(4)观察发现规律。

(5)总结概括:在数学中这种方法叫列表法。(板书)。

(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)

质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?

3、探讨假设法:

a、假设全是兔。

1师以童话故事的形式引入全是兔的情境。

2集体探究,引导交流。

b、假设全是鸡。

1师再次继续童话故事引入全是鸡的情境。

2小组独立探究交流假设全是鸡的计算方法。

3指名小组展示并叙述计算过程。

4小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)

5延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。

(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)

三、练习巩固

出示练习题。

四、课后总结

(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)

板书设计:

鸡兔同笼

1、列表法

2、假设法

鸡兔同笼教学设计【篇3】

教学目标:

1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。

3、了解我国古人解鸡兔同笼问题的方法,感受其趣味性。

教学重点:

尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的.思维能力。

教学难点:

在解决问题的过程中,培养学生的逻辑思维能力。

教法:分析、引导

学法:自主探究

课前准备:

多媒体。

教学过程:

一、定向导学:2分钟

1、师:同学们,你们知道吗,大约在1500年前,我国古代的数学名著《孙子算经》中,记载着一道有趣的数学题:(课件出示,题略)你们知道这道题的意思吗?

生:……(课件演示)

师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。

2、学习目标:

掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

二、自主探究:8分钟

内容:课本p104例1的(1)

时间:5分钟

方法:边看书边完成下面要求:

1、“鸡兔同笼”这四个字是什么意思?

2、书上用了()种方法来解决这个问题。

3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?

生理解:

(1)鸡和兔共8只;

(2)鸡和兔共有26只脚;

(3)鸡有2只脚;

(4)兔有4只脚;

(5)兔比鸡多2只脚。(课件演示)

师:那问题是什么?

生:鸡和兔各有多少只?

3、猜一猜:

师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?

4、介绍列表法:

师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)

5、观察发现,列式计算

三、合作交流:5分钟

假设全是兔,怎样解决?试一试。

四、质疑探究:5分钟

解决鸡兔同笼这类问题,有几种假设的方法?

五、小结检测:20分钟

1、小结方法:

同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。

2、检测:

a、问答:

(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?

为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)

(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)

(注:如果前面出现了折半列表,就把这个环节提前讲。)

(3)其实在我们生活当中类似于鸡兔同笼的问题有很多的,这些问题都可以用不同的方法去解决,下面请同学们用自己喜欢的方法做一些题目?

b、解决问题

(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

(2)全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?

(3)新星小学”环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各几人?

作业:p106;1、2、3。

板书:

鸡兔同笼

假设全是鸡,就有脚8×2=16(只)

比实际少26—16=10(只)

一只鸡比一只兔少4—2=2(只)

兔子:10÷2=5(只)

鸡:8—5=3(只)

鸡兔同笼教学设计【篇4】

教学目标:

1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。

教学重点:

明确鸡兔同笼问题数量关系。

教学难点:

初步形成解决此类问题的一般性。

教学过程

一、历史激趣,导入新课(3分)

导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?

这句话中,你们有不明白的词语吗?(电脑出示:题目中的“雉”(读成“zhì”),就是野鸡。)谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。)

师:古代人对这样的题目有着自己独道的见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题:鸡兔同笼)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法。

【设计意图:这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。】

二、合作探究,构建新知(15分)

1、请同学们看一幅鸡兔同笼的情景图(课件出示)你能猜出这笼子里有几只鸡和几只兔吗?

请看题目,鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?

2、先猜一猜,可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。

3、独立思考:

(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。

鸡兔可能各有多少只?你想怎样解决这个问题呢?

找几名同学说一说解决的办法。

同学们可以借助表格清晰明了的呈现出你的解题方法,如果有其他解题方法,请写在答题纸上。

【设计意图:尊重教材;不束缚限制任何学生的思维,养成专注倾听的习惯拓宽学生思路,留给学生独立思考的空间,倡导用多种方法解决问题。】

4、学生独立完成,教师巡视。

5、学生汇报:

1)、(假如有采用逐一列表法的`)请一个采用逐一列表法解决的同学汇报,汇报讲出理由(你是如何确定第一组数据的,验证后发现了什么问题,怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。)

还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。

鸡兔同笼教学设计【篇5】

教学目标

1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的数量问题。

2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。

3、运用学到的解题策略——列表解决生活中的实际问题。

4、培养学生分析问题的能力,渗透假设的数学思想。

教学重点

让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。

教学难点

运用学到的解题策略解决生活中的实际问题。

教学过程:

一、情境引入,激发兴趣

今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

谁来读一读,你见过这类题吗?

今天我们就来研究这类问题(板书鸡兔同笼)

二、探索问题

1、课件出示:(教材中的情景图)鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?

从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)

现在同学们就来猜一猜鸡、兔各有多少只?

把你猜想的结果跟你的同桌同学交流交流。

学生交流后:请学生汇报猜想的情况

教师随机板书

看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么

生:可以按照一定的顺序把他们排列起来看就很清楚

师:对,按照一定的顺序把他们排列在表格里那会看得更清楚

那么列表先做什么

生:(1)画表

(2)填写第一行

师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。

出示学习要求1、先独立尝试猜测

2、把尝试的数据在表格中表达出来

3、在小组内交流自己的想法

生:尝试列表

展示学生的表格请学生说一说是怎样做的

师:一共尝试了几次

生:13次,尝试出了这道题的答案

师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么

生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。

师:给这种列表法起个名字

生:起名字

师:在数学上也有一个名字逐一列表

师:观察这张表格,你有什么发现

生:一一列出,肯定能找出答案,但有些麻烦

师:那还有什么列表方法

展示学生第二种列表方法出示表格

生:说这种列表的`方法

师:观察这个表格,你又发现了什么

生:这种列表,先几个几个的数,再逐渐调整

师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表

展示学生第三种列表方法出示表格

生:说这种列表的方法

师:观察这个表格,你又发现了什么

生:这种列表,先假设鸡兔各占一半,再调整

师:这种列表有直接特点,我们称这种列表方法为取中列表

想一想,为什么用列表法解决这个问题

生:简单,能准确计算结果

师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么

生:列表

师:首先根据信息尝试猜测,再计算验证,最后合理调整。

师:还可以用什么方法计算

生:计算

师:想知道古人是怎样解决这道题吗

课件出示资料

师:看了这个资料你想说什么

三、实践运用,巩固深化

1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5。1元,1角和5角的硬币各有多少枚?

2、赛场上12张乒乓球台上同时有34人进行比赛,正在进行单打、双打比赛的球台各有几张?

3、小红参加数学知识竞赛,共10道题,每做对一道题得10分,做错一道题扣2分。小红每道题都做了,共得64分。她做对了几道题?

四、总结

通过这堂课的学习你学会了什么?

鸡兔同笼教学设计【篇6】

教学内容:

数学北师大版五年级上册第五单元尝试与猜测第一课时《鸡兔同笼》教材80~81页

教学目标:

1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探究、合作交流,让学生经历用不同的列表方法解决“鸡兔同笼”问题的过程,明确数量关系。

教学重点:

明确鸡兔同笼问题数量关系。

教学难点:

初步形成解决此类问题的一般性。

教学过程

一、历史激趣,导入新课

1、导语:老师知道我们班的同学非常喜欢读书,今天老师给同学们带来一部1500年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),里面记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(师读,课件中标注出题目中的“雉”:(读成“zhì”)野鸡;几何:多少。)师:谁知道,这道题目是什么意思?

师:是呀,这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。

师:古代人对这样的题目有着自己独到的见解,我们把类似于这样的问题,统统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。板书课题。(板书:鸡兔同笼)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看屏幕。出示题目:(鸡兔同笼问题,课件出示鸡兔同笼情境图)

二、主动探究、合作交流、学习新知:

1、师:请大家自由读题,你们都知道了什么信息?

生:鸡和兔一共有20个头。鸡兔一共有54条腿。求分别有几只?

师:还有补充吗?有两个隐藏条件看谁细心发现了?。

生:鸡有2条腿,兔子有4条腿。鸡和兔一共有20个头。鸡兔一共有54条腿。求分别有几只?

师评:他还发现了隐藏条件,审题真细心。

2、先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。

3、独立思考:

(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。

(2)师:你们愿意自己独立解决这个问题,还是我教给你们方法你们做?好,那就请你们小组合作交流,在小组长的带领下,用自己喜欢的方法来解决这个问题。比一比,看看那个组想出的办法多,方法巧。学生合作,教师巡视指导。

4、汇报:(汇报时,师生、生生质疑,评价)

A、师:谁愿意展示你的方法?

(1)列表法:①逐一列表法

小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)

师:学生说出“1只鸡,19只兔子”,问“怎样计算出的腿数?”1×2+19×4=2+76=78问“结果就是13只鸡,7只兔子吗?怎样可以知道这个结果是正确的?”是的,可以用算式来验证:13×2+7×4=26+28=54(条)

师:谁和他的方法一样?能再讲讲吗?

师:追问“有些同学在填表时写出的腿数特别快,让我们采访一下有什么秘诀?”(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。反之依然,所以列表列得特别快。)

师:评价“像你们这样,采用列表的方法,不重复、不遗漏的写出所有可能的答案。这种逐一列举的方法在数学中也称为“枚举法”(板书)

小结:逐一列表法虽然比较麻烦,但是不重复不遗漏;

师:除了像他们这样逐一列举,还有不同的列表方法吗?

②跳跃列表

请小幅度跳跃列表的同学汇报;(汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的谁还有不同的调整策略?)问:你们觉得这种方法怎么样?(简便、快捷)

请大幅度跳跃列表同学汇报(你是怎样想到把鸡或兔的只数从只一下调整到只的)请大或小幅度调整与逐一相结合的汇报(重点追问:你每一步是怎样进行调整的?根据什么进行调整的?)

小结:列表过程中根据需要我们可以有规律的小幅度跳跃,也可以根据自己的发现大幅度的跳跃;(板书跳跃)③取中列表法

请选用取中列举法的同学汇报?追问:你是怎样想到这种列表法的(说出理由)

还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?

小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)

(2)、回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)

(3)你最喜欢那种列表方法?理由呢?

(4)、同学们还有其他的方法解决这道题吗?

直观画图法:大家明白了吗?你觉得这种解法怎么样?

小结:画图的方法非常直观便于观察、非常容易理解。

(5)、同学们还有具有独特个性的解法吗?可以用自己的名字命名汇报。

过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。

三、方法应用,巩固新知

师:同学们,能用你喜欢的列表方法来解决一些问题吗?

1、鸡兔同笼,有17个头,42条腿,鸡、兔各多少只?抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,

2、在我们的生活中所遇到的`一些问题,与鸡兔同笼问题有什么联系呢?小明的储蓄罐里有1角和5角的硬币共27枚,价值元,1角和5角的硬币各有多少枚?

3、运输中的鸡兔同笼问题

用大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?

尝试运用你喜欢的方法独立完成此题学生汇报:

你采用的是那种列表方法为什么要选用这种列表方法?

谁有不同的列表方法?

1)、(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生集体尝试逐一列表的方法。

就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?(没有限定大小卡车的总辆数)

哪种方法解决最好?或

2)、(如出现一名同学有两个正确答案和分别一个正确答案)你认为谁的方法更好?

过渡语:老师相信同学们一定会耐心细致的做每一件事请。

四、总结全课交流收获

生活中随处可见鸡兔同笼问题,愿意告诉老师这节课你的学习收获吗结束语:数学自古以来是中国历史上的璀璨明珠,在我们的生活中更是无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。

五、板书设计:

鸡兔同笼

列表法思路

逐一猜测

跳跃验证

取中调整

    595345