平行四边形的性质教学设计

|育祥

教学设计需要考虑评估和反馈的环节,通过设定评价标准和提供有效的反馈机制,了解学生的学习进展,指导教学的调整和优化。教师可以不断提升教学设计的质量,适应学生和教育环境的变化,以实现更好的教学效果和学生发展。现在随着小编一起往下看看平行四边形的性质教学设计,希望你喜欢。

平行四边形的性质教学设计

平行四边形的性质教学设计【篇1】

教材分析

本节课既是七年级平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础。本节课是在学生掌握了平移等知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用。

学情分析

八年级学生有一定的自学、探索能力,求知欲强。并且,学生 在小学里已经初步学习过平行四边形,对平行四边形有直观的感知和认识。在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。借助于远教资源的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。在此基础上学习了平行四边形的性质,可以比较自然地得出平行四边形的性质。

教学目标

㈠、知识与技能:

1、理解并掌握平行四边形的定义;

2、掌握平行四边形的性质定理;

3、理解两条平行线的距离的概念;

4、培养学生综合运用知识的能力;

㈡、过程与方法:经历探索平行四边形的有关概念和性质的过程, 发展学生的探究意识和合情推理的能力。

㈢、情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。

教学重点和难点

重点:平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用。

难点:运用平行四边形的性质进行有关的论证和计算。

平行四边形的性质教学设计【篇2】

【学习目标】

1、平行四边形性质(对角线互相平分)

2、平行线之间的距离定义及性质

【新课探究】

活动一:

如图,□ABCD的两条对角线AC、BD相交于点O.

(1)图中有哪些三角形是全等的?有哪些线段是相等的?

(2)想办法验证你的猜想?

(3)平行四边形的性质:平行四边形的对角线

几何语言:∵四边形ABCD是平行四边形(已知)

∴AO==AC,BO==BD()

活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.

(1)线段AC,BD有怎样的位置关系?

(2)比较线段AC,BD的长短.

(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.

【知识应用】

1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.

3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是

【当堂反馈(小测)】:

1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长

3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?

【巩固提升】

1.平行四边形的两条对角线

2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是

4、下列性质中,平行四边形不一定具备的是()

A、对角互补B、邻角互补C、对角相等D、内角和是360°

5、下列说法中,不正确的是()

A、平行四边形的对角线相等B、平行四边形的对边相等

C、平行四边形的对角线互相平分D、平行四边形的对角相等

6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长

7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。

8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。

(1)写出图中每一对你认为全等的三角形;

(2)选择(1)中的任意一对进行证明。

9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。

(1)多做几条这样的直线,看看它们有什么共同的特征

(2)试着用旋转的有关知识解释你的发现。

平行四边形的性质教学设计【篇3】

一、教学目标

1知识目标

理解平行四边形的概念;探索并掌握平行四边形的对边相等,对角相等的性质。

2能力目标

在探索过程中发展学生的探究能力,提高学生运用数学知识解决问题的能力;

3情感目标

培养学生合作交流的习惯,提高克复困难的勇气和信心。

二、教学重点、难点

教学重点:探索平行四边形的性质

教学难点:通过操作、思考、归纳出结论

三、教学方法

探索归纳法

四、教学过程

(一)创设情境,引入新课

1.(幻灯片展示)观察图片中有你熟悉的哪种图形?(平行四边形)请你举出自己身边存在的平行四边形的例子。

例如:汽车的防护链,地板砖,篱笆格子等(用幻灯打出实物的照片) 2.观察图形有什么特征?(有两组对边分别平行)

平行四边形的定义:两组对边分别平行的四边形叫做平行四边形如图:四边形ABCD是平行四边形记作:ABCD今天我们就来探究平形四边形的性质。

(二)讲授新课

1、拼一拼(出示幻灯片)小组合作,探究新知

用两个全等的三角形纸片可以拼出几种形状不同的平行四边形?从拼图中你能得到哪些启示?相对的边、角分别有什么关系?

(让学生实际动手操作,可分组讨论结论,用ppt课件展示)

2、学生分析总结出:平行四边形的对边平行

平行四边形的对边相等

平行四边形的对角相等

平行四边形的邻角互补

用符号语言表示:如图

小结:平行四边形的性质是证明线段相等、角相等的重要依据和方法。 3.用什么方法验证平行四边形:两组对边分别相等

两组对角分别相等

(小组讨论比一比看谁的速度最快、方法最多)

4、例题讲解

如图:小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?

解:∵四边形ABCD是平行四边形

∴AB=CD, AD=BC

∵AB=8m

∴CD=8m

又AB+BC+CD+AD=36

∴ AD=BC=10m

(三)随堂练习(幻灯片展示)

(四)感悟与收获

1.两组对边分别平行的四边形叫做平行四边形. 2.平行四边形的性质:对边平行

对边相等

对角相等

邻角互补

3.解决平行四边形的有关问题经常连结对角线转化为三角形。

(五)作业

(六)板书与设计

(见幻灯片)

平行四边形的性质教学设计【篇4】

一、教材分析:

1、教材的地位和作用

平行四边形及其性质是九年制义务教育课本七年级第二学期第十七章的内容,是论证线段相等、角相等和两直线平行的依据之一,在实际生产和生活中有广泛的应用。它是本节的重点,又是本章的重点。学习它不仅是对已学的平行线、三角形等知识的综合运用和深化,更是下一步研究特殊平行四边形和有关定理的基础,具有承上启下的作用。因此本节课的重要性是不言而喻的。

2、教学内容的确定

按教材编排,平行四边形性质共分两课时完成,我对本节教学内容进行适当的重新组合。第一课时重点是安排学生探究平行四边形的概念及性质,并初步运用这些性质进行有关的论证和计算。这样做的目的是:用猜想实验验证的方法探索平行四边形的性质,这样更符合学生的认知规律,同时也使以后进一步研究其它特殊四边形的性质时,水到渠成,学生易于接受。同时更能培养学生主动探求知识的精神和思维的条理性。

3、教学目标:

根据大纲要求,结合教材特点,我认为本节课应达到以下几个目标:

(1)使学生掌握平行四边形的定义及性质,并初步运用这些性质进行有关的论证和计算。

(2) 在充分让学生参与学习的过程中,渗透猜想实验验证的学习方法,注意培养学生观察、分析、推理、概括以及实践能力和创新能力。

(3) 培养学生严谨科学的学习态度,勇于探索、勇于创新的精神,并对学生进行由一般到特殊的辨证唯物主义观点教育。

4、教学重点和难点

重点是平行四边形的概念和性质。难点是探索性质、寻求解题思路。

二、教法:

为使几何课上得有趣、生动、高效,结合本节课内容和学生的实际水平,采用大胆猜想,实验验证为主,直观演示、设疑诱导为辅的教学方法。在教学过程中,通过设置带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,让学生亲身体验知识的产生过程,激发学生探求知识的欲望,使学生始终处于主动探索问题的积极状态,使获取新知识水到渠成。

考虑到如何更直观、形象地突破教学重、难点,增大课堂容量,提高课堂效率,采用了电脑多媒体教学辅助手段。

三、学法:

叶圣陶说教是为了不教,也就是我们传授给学生的不只是知识内容,更重要的是指导学生一些数学的学习方法。

在学习    平行四边形概念过程中,让学生认识事物总是互相联系的,应该做到温故而知新。而通过平行四边形性质的结论探索,让学生认识事物的结论必须通过大胆猜测、判断和归纳。

在分析理解性质的证明过程时,加强师生的双边活动,提高学生分析问题、解决问题的能力。通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯。

四、教学程序

1、复习旧知

(1)根据平行四边形的定义判断下图是否是平行四边形:

请你用手中的三角尺验证。

通过让学生自己动手操作,激励学生主动参与,激发浓厚的学习兴趣,同时为发现新知识做准备。

(2)结合图形,用符号语言表示平行四边形的定义

目的:请学生将文字语言翻译成符号语言,有利于培养学生正确运用数学语言的能力。

强调:平行四边形的定义既是平行四边形的一个重要性质,同时也是判定一个四边形是否平行四边形的依据之一。

(2)举出日常所见的平行四边形。(多媒体演示)

联系生活实际让学生举出日常所见的平行四边形。以获得对平行四边形尽可能多的精确感知,让学生认识到平行四边形在生活、生产中的应用,以激发学生的学习兴趣。同时使学生明确本节课学习目标是学习   平行四边形性质。

2、新课引入性质的发现和证明

这一环节是全课的重、难点所在,为了方便学生探索活动的顺利开展,同时渗透科学研究的一般方法,我将这部分内容按启发猜想,动手实验电脑验证三个层次进行教学。

A、启发猜想

根据平行四边形图形,启发学生猜一猜,平行四边形的性质可能与什么有关?引发学生的发散性思维,给学生提供自我表现、猜想的空间,充分发表意见的机会,以便最大限度地发挥学生的主体能动性,激发他们的创造性。然后筛选有价值的猜想,并再次创设问题情景,平行四边形的性质与边、角、对角线有怎样的关系呢?又一次地激起学生求知的欲望,让学生带着问题进入下一层次的教学。

B、动手实验

(1)根据已有的平行四边形图形 ,填写实验报告:

实验报告

研究对象

研究结果

符号语言

对边

邻边

对角

邻角

对角线

在这一层次我要求学生充分利用手中的度量工具进行操作并填写实验报告。

(2)进一步要求学生组成四人小组进行合作探究活动:

任意一个平行四边形被对角线分成的两三角形是否全等。

C、多媒体验证

然后我利用几何画板的作图工具直观演示作出平行四边形的过程,并对相关的各元素关系进行检验。接着通过几何画板的动画功能,动态地对平行四边形的各元素关系再一次进行检验。使学生形成共识:平行四边形的对边相等、对角相等、邻角互补、对角线互相平分。学生的研究结果和符号语言表述可能是凌乱的、不完整的,例如学生对对角线互相平分的性质很难用语言准确表述,则教师可在此基础上对线段互相平分的含义进行说明,使学生的语言表达更准确。

结果归纳如下:

以上整个活动学生学到的不只是性质本身,而是科学的态度、合作的精神和探究的能力。同时也体现了学生的主体作用和老师的主导作用有机结合,符合因势利导原则。

3、性质的应用

① 练习1:

(1) ABCD中,已知A=500,则B= ,C= ,D= 。

(2) ABCD中,已知C=2000,则A= ,B= 。

(3) ABCD中,AB=3,BC=5,则 ABCD的周长为 。

(4) ABCD中,AC、BD相交于点O,AC=10,BD=8,△AOB的周长为16,则AB= 。

练习1是对平行四边形的性质的简单应用,符合巩固性原则。

② 拼图:(学生事先准备好两个三边都不相等的全等三角形)

把两个三边都不相等的全等三角形按不同的方法拼成四边形,你能拼成几个平行四边形?

安排拼图活动的目的:

(1) 调动学生的积极性和主动性,使学生从拼图活动中找到解决问题的方法。

(2) 培养了学生的动手操作能力和一题多解的思维方式

5、课堂小结:

本环节以今天学了什么?这些知识我们是用什么方法学来的?你懂得了什么?这种谈学习体会的形式结束新课。学生可以讲本节课所学到的知识,也可以讲学习知识运用的数学思想方法。通过学生回答,不仅可以反馈学生的学习情况,同时也体现了学生是学习的主体。

6、作业布置:

( A类 ) 习题B册:习题17.2(1), 习题A册:习题17.2(2)

( B类 ) 思考题

作业的设计体现了分层训练的教学原则,A类要求全体学生独立完成,B类供学有余力的学生做。

五、教学评价

这堂课既是一堂新课,同时也是一堂实验课。整个教学过程中注重学习方法、注重思维方法、注重探索方法,体现了方法比知识更重要这一新的教学价值观。这样的教学,突出了重点,化解了难点,实现了学习的再创造,确保了学生的主体地位,提升了学生学习数学的综合素质。

平行四边形的性质教学设计【篇5】

【知识目标】

1、掌握平行四边形有关概念;

2、在动手操作实践的过程中,探索并掌握平行四边形的性质。

【能力目标】

1、通过探索与证明平行四边形的性质,发展演绎推理的能力;

2、在证明平行四边形的性质的过程中,体会将平行四边形问题为三角形问题的转化思想.

【情感态度与价值观】

在进行探索的活动过程中发展合作交流的意识.

【数学核心素养目标】

1、通过操作活动,在发现平行四边形的性质的过程中培养直观想象的数学素养;

2、通过对性质的证明,进一步提升逻辑推理的数学核心素养.

教材

分析

重点

掌握平行四边形的概念与性质

难点

对平行四边形性质的探究与证明

教学方法

引导类比、鼓励操作、启发推理

学法指导

探索发现、猜想证明、迁移应用

教学过程

一、引入新课

PPT呈现:类比是伟大的引路人,转化是智慧的思想家.

几何学习,是一场充满挑战与惊喜的旅行,老师很荣幸今天能和在座的同学们继续我的平面几何之旅.

回顾我们学过的平面图形:

直线、射线、线段角三角形?

同学们推测一下,接着我们会研究那种平面图形?四边形

我们就从生活中常见的一类特殊的四边形——平行四边形研究起.

你能举出一些生活中常见的平行四边形实例吗?

地砖、推拉门、活动衣架、窗格……

二、实践探究

1、平行四边形的相关概念

平行四边形的定义:两组对边分别平行的四边形,叫做平行四边形.

D

C

A

B

如图:

学生活动:邀请学生指导老师画两组分别平行的线段,并上黑板协助老师画图,从而得到平行四边形.

平行四边形的符号表示:ABCD,读作“平行四边形ABCD”

(注意表示时,四个顶点A、B、C、D的书写顺序只能按顺时针方向或逆时针方向)

边、对边、邻边;角、对角、邻角

对角线:平行四边形不相邻的两个顶点连成的线段叫做它的对角线.

ABCD的对角线有两条:AC、BD

2、平行四边形是中心对称图形

活动:利用平行四边形纸片探索平行四边形的性质

活动方式:同桌或四人小组合作、讨论交流.

教具:画好平行四边形的彩纸、透明纸各一张、图钉一枚.

平行四边形是中心对称图形,两条对角线的交点是它的对称中心.

3、平行四边形的性质

性质1:平行四边形的对边相等.

已知:如图,四边形ABCD是平行四边形.

因为四边形ABCD是平行四边形

所以∠A=∠C,∠B=∠D

求证:AB=CD,BC=DA.

证明:连接AC

因为四边形ABCD是平行四边形

所以AB∥CD,BC∥DA(平行四边形的定义)

所以∠1=∠2,∠3=∠4

在△ABC与△CDA中:

所以(ASA)

所以AB=CD,BC=DA

几何语言:

因为四边形ABCD是平行四边形

所以AB=CD,BC=DA

性质2:平行四边形的对角相等.

几何语言:

因为四边形ABCD是平行四边形

所以∠A=∠C,∠B=∠D

三、应用迁移

【例题探究,夯实基础】

例:已知:如图,在□ABCD中,E,F是对角线AC上的两点,并且AE=CF。

求证:

证明:因为四边形ABCD是平行四边形

所以AB=CD(平行四边形的对边相等)

AB∥CD(平行四边形的定义)

所以∠BAE=∠DCF

在12鈭咥BE/与12鈭咰DF/中:

因为

所以(SAS)

所以BE=DF

【例题变式,灵活思维】

变式1:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且AE∥DF。

求证:

变式2:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且BE平分∠ABC,DF平分∠ADC.

求证:

变式1图变式2图

【接龙练习,巩固迁移】

1、如图,四边形ABCD是平行四边形,

若∠A=130°,则∠B=______,∠C=______,∠D=______;

若AB=4,AD=5,则BC=__________,CD=________。

第1题图第2题图

2、如图,在平面直角坐标系中,□ABCD的三个顶点为A(0,0)、B(4,0)、D(1,2),则顶点C的坐标是_____________。

3、小强用30米的铁丝围成一个平行四边形的场地(不计接口长度),其中一条边长是10米,则与这条边相邻的边的长度是________米.

4、如图,在□ABCD中,若BE平分∠ABC,则ED=.

5、如图,在□ABCD中,AM平分∠BAD,BM平分∠ABC,∠AMB____。

第4题图第5题图

【游戏设计,拓展提升】

四位同学玩传球游戏,三位同学已经站好位置,要求以这四位同学所占位置为顶点,组成平行四边形,请问第四位同学应该站在哪里?

解:如图,第四位同学可以站在P、Q、M这三个位置.

四、本课总结

知识:平行四边形的概念与性质

探究方法与思想:类比探究,转化思想

五、作业布置

必做题:课本P1372、3、4题.

选做题:将【游戏设计,拓展提升】部分的问题整理在好题本“分类讨论”这一问题中.

设计意图

提醒并渗透“类比的方法、转化的思想”.

提醒学生本节课是几何探究课程.

本节课是《平行四边形》这一章的章起始课,促使学生对平面图形的学习进行系统性的认识.

小学已经感知上认识了平行四边形,由学生主动举生活中平行四边形的实例,感受数学源于生活而服务于生活,同时逐渐调动学生主动思考,为接下来的探究热身.

突出学生课堂主体的地位,加深对平行四边形定义的认识.

突出重点:

1、学生通过观察、动手操作,经历平行四边形性质的探索和发现过程,发展合作交流的意识,提升探究能力;

2、在动手操作额过程中,发现并验证了平行四边形是中心对称图形;

3、使学生发现平行四边形中有关元素之间的相等关系,获得平行四边形有关性质的猜想.

突破难点:

1、学生探索猜想性质是合情推理,而规范证明则是演绎推理,通过规范的几何证明,提升学生的推理论证能力.

2、转化思想:将四边形问题转化为三角形问题来研究.

1、引导学生探索并展示多种证明方法.

2、激励学生分析、解决问题的热情,进一步提升推理论证的能力.

本例是对所学的平行四边形性质定理的简单应用。教学时让学生先独立思考,再组织学生进行交流。鼓励学生充分表达他们寻求证明思路的过程。

这两个问题是对例题条件进行变化,结论不变,以促进学生对平行四边形性质的熟练掌握与灵活运用.

1、这组练习的设计,层层递进,由浅入深,可有效地开发各层次学生的潜能及上进心,实现分类推进的教学思想.

2、第4题引导学生发现平行四边形一条角平分线可以构造出等腰三角形;

3、第5题引导学生发现平行四边形两个邻角的角平分线可以构造出直角三角形三角形.

(此问题根据实际授课情况,可删减)

1、游戏情境,激发学生兴趣;

2、此问题有三种情况,体现分类讨论的思想,促进学生思考问题的全面性;

1、作业一部分是必做题,体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题,让“不同的人在数学上得到不同的发展”.

2、选做部分为了促进学生养成分类梳理数学问题的习惯.

平行四边形的性质教学设计【篇6】

一、教材分析

1.教材的地位与作用平行四边形是最基本的几何图形,也是“空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用

2.教学目标:知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.

3.教学重点、难点:重点:理解并掌握平行四边形的概念及其性质.难点:运用平移、旋转的图形变换思想探究平行四边形的性质.

4.教材处理:基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.  然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.

二、教学方法与手段

本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.

三、教学程序

设计说明本节课的设计,以建构主义理论为基础,以问题为载体,以学生的动手实践、自主探索、合作交流为主要的学习方式.在教学过程中,实施开放式教学,创设民主、宽松的教学氛围,最大限度地调动学生的积极性,激发他们的学习兴趣,引导他们多角度、多方位、多层次地思考问题,使他们有足够的的机会显示灵性、展示个性.教师成为课堂问题的激发者、有序探究的组织者、学生错误的澄清者、多角度思考的促进者,使师生成为“数学学习的共同体”

1、创设情境,把学生置于问题的建模过程

本节课以学生习以为常的“平行光线在室内的投影”为情境引出课题,激起学生强烈的好奇心和求知欲.使学生不知不觉中走入数学王国,经历了将实际问题抽象为数学问题的建模过程.

2、实践探究,把学生置于结论的发现过程

首先,将枯燥的概念教学赋予有趣的实际背景,使教学内容更生动、更鲜活.通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律.再通过对拼出的四边形分类,进一步加深学生对概念本质的理解.其次,遵循学生学习数学的认知规律,对教材内容进行了重组加工,将教材中平行四边形性质的探究活动完全开放.为学生提供了自主合作探究的舞台,营造了思维驰骋的空间,激发了学生思维创新的火花。

3、变式训练,把学生置于创新思维的深入培养过程

把书中一道命题证明的练习题改编成有趣的实验操作型问题,做到源于教材,活于教材.使学生学会用运动、变化的观点分析问题,从而培养学生思维的严谨性、发散性、灵活性,达到举一反三的作用.最大限度地发挥学生的潜能,活跃思维,培养学生的合作意识、创新精神。

四、反思小结

把学生置于知识系统建立的过程中这节课的结尾,既有对课堂知识的系统小结,又有对思想方法的高度凝炼,提升学生思维品质,让学生获得可持续发展的动力.板书设计充分体现了本节课的学习要点,给学生留下清晰的记忆。

平行四边形的性质教学设计【篇7】

本节课通过多媒体课件展示学生熟悉的实际问题中的图片情境引入,激发学生的兴趣,也加强了与实际生活的联系。让学生经历从实际问题中抽象出数学概念的过程,发展学生的抽象、概括、归纳的能力。通过拼图获得丰富的感性认识,引导学生探究平行四边形的性质,解决平行四边形的有关问题经常连接对角线转化为前面所学习的三角形。

通过多媒体信息技术的应用可以把一些图片形象的展现给学生,可以为整节课提高效率,可以把一些题目很快的展现给大家,一些很难理解、复杂的东西可以通过视频让学生清晰的看到。

课堂中还存在一些不足之处:

1、学生在自主探索概念和性质时,学生较容易通过直观操作得到概念,探索出对边相等,对角相等的性质,但是在用图形平移,旋转验证平行四边形的性质时,部分同学存在困难,所以教学时应通过实物演示或多媒体动画帮助学生理解图形的变换,引导学生得出性质。

2、学生在对性质的说理和简单的推理论证时,一些学生说理的过程缺乏严谨,在教学过程中不能急于求成,应该注意引导。而且在今后学习中,不断地训练学生“能清晰,有条理地表达自己的思考过程,做到言之有理,落笔有据”的意识。

平行四边形的性质教学设计【篇8】

在本节课的教学中,我按照课本上的思路,在实际过程中,学生作图、观察这个环节比较顺利,多数学生能得出对边相等,对角相等这两个结论,在进一步追问下,学生可以理解用全等知识来证明这两个结论的正确性。板书证明过程这个环节是由教师完成的,因为这个时候学生需要的是规范的证明格式与思路,我的重点放在引导学生将证明思维转化成具体的证明书写,课本上用箭头表示的思路过程非常清晰,但与中考的证明格式要求不同,所以在这个步骤上,花费时间较多。在教师和学生共同完成定理证明后,再引导学生观察这两个全等三角形之间的旋转变换关系,加深对前一章旋转变换的理解。课后的习题讲解时,我采取先让学生说,再书写过程的方式,虽然费时较多,但个人认为对几何证题思路还是有帮助的,从中也发现了不少学生容易出错的地方,部分学生在说思路的时候跳跃性太大,写作证明过程的时候有掉条件的情况,比如证全等的条件,题目并未直接给出条件,有学生未经证明就用来证明全等。整节课书写证明过程花费的时间较长,课后习题未能处理完,留给学生课后完成。

其实无论采取哪种方式进行本节课的教学,最关键的是让学生理解平行四边形的性质,并会利用性质进行简单的应用,这里需要对学生进行严格的证明书写训练,从几何整体教学来看,公理化体系有助于学生理解后继的特殊平行四边形的性质、判定定理。

    540997