《分数乘整数》教学反思
教学反思需要教师对自己的教学过程进行细致观察和记录,可通过日志、观察记录和学生反馈等方式收集关键信息。需要教师了解学生的需求和背景,以便根据不同学生的需要灵活调整教学方法和教学资源。现在随着小编一起往下看看《分数乘整数》教学反思,希望你喜欢。
《分数乘整数》教学反思篇1
一、利用已有知识引导学生实现正迁移。
《分数乘整数》是分数乘法单元的第一课时,本课主要让学生通过自主探索,了解分数与整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法。而分数与整数相乘的意义与整数相乘的意义相同,这节课在引入课题时,葛文娟老师设计了下面的两道习题:
(1)做一朵绸花要30厘米绸带,小丽做3朵这样的绸花,一共用多少厘米绸带?
(2)做一朵绸花要0.3米绸带,小红做3朵这样的绸花,一共用多少米绸带?
通过让学生列式并追问为什么都用乘法计算,激活学生已有的对整数乘法意义的认识。然后再通过改题呈现例1:做一朵绸花要米绸带,小芳做3朵这样的绸花,一共用几分之几米绸带?学生顺理成章地列出了例1的乘法算式,通过我追问这题为什么也用乘法计算?学生自然地将整数乘法的意义迁移到分数乘整数的意义中,实现了知识的正迁移。
二、尊重学生的“数学现实”,加强算法的探究。
在学习本课之前,其实已经有许多学生大概知道了分数乘整数的计算方法,但对于为什么要这样算就不清楚了。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时×3的算法时,小葛老师问:你知道怎么乘吗,你认为整数3与分数的什么相乘呢?重点让学生明白为什么要这样乘。抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母不变”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。
二、实现教学的个性化,发展学生的思维。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,葛老师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。
《分数乘整数》教学反思篇2
一、引导自主探索,了解分数与整数相乘的意义。
1、导入新课时,引导学生涂色表示3个米,目的是让学生认识到求3个米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推,进一步发展学生合情推理能力,体验探索学习的乐趣。
二、加强过程体验,体会过程约分比结果约分更简便。
在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11=?的练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。
存在不足:
本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。
《分数乘整数》教学反思篇3
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课前,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘的积作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。
一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。
这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。作为分数乘法的第一节课—分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法过程中约分时,我让学生用两种方法进行了比赛,如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要先约分”这一要点。
《分数乘整数》教学反思篇4
把这次公开课选为《分数乘整数》这一内容,是因为上学年听了冬梅老师讲了若干遍《分数乘分数》,并一举在市名列前茅。我选了《分数乘分数》的前一信息窗,内容相对来说比较简单。对此类课的教学思路有了一定的了解,感觉有信心上好这节课。
课堂上,我是按照事先设计好的方案一步一步地进行着。结果第一环节提出数学问题,根据已有的经验列出算式就出了问题,我提出:“‘求做一个风筝一共需要多少米布条?’其实就是求什么?”。一下子把孩子问在那里了。周折了一小会儿才开始列式计算了。紧接着第二个环节列式计算,并理解分数乘整数算式的意义还好。很顺利地进行到第三个环节学习计算方法。大部分学生都用分母不变,只把分子与整数相乘的方法计算的。我不失时机地启发学生思考:为什么只把分子与整数相乘呢?比比看谁的理由最充分。这时学生们都陷入了思考,带着“为什么”去探索。在课堂上迫不及待。积极主动地进行讨论,在理清算理的基础上通过课件演示总结出法则。这一环节我自己还比较满意。到了第四环节,通过法则指导计算,并学会简便方法约分时,又出问题了,学生不理解为什么约分后的分子相乘分数的大小还不变,一直在那里纠结,足足耽误了将近十分钟的练习时间。
通过评课,同行们给我找明了问题的关键:
1、教师在第一环节的提问绕圈子了,不要问学生“要求这个问题就是求什么?”直接让学生列式解答即可。在列式的基础上让学生自己发现6个相加可以写成×6的形式,从而明白分数乘整数的'意义。
2、在探究算法的过程中,应当与算理相融合,一位同学探究说出算理和算法以后,应该结合课件再多找几个学生强化一下,这样落实面才会更广一些。
3、当学生提出对于约分环节的不理解时,教师不要急于解释,可让其在练习的基础上验证一下,或告知其下课后继续研究,一定不要把时间浪费在与个别学生纠结一些价值不大的问题。教师要有主观能控力。
4、分数的书写顺序要注意标准。
听了大家伙的建议,自己感觉很有道理,不再去邻班讲一次真对不住朋友们提出的这些大好建议。感谢教研组的评课,各路高手就像是一位位神医,帮我查找到这节课的各种病症,只不过要想医治成功还需要“患者”的努力。
《分数乘整数》教学反思篇5
“分数乘整数”在练习中,50%的学生喜欢用分数加法的计算方法来做分数乘法。学生利用式题,不但总结出了分数乘整数的计算方法,而且知道了算理(也就是分数乘整数的意义),真正做到了算理与算法相结合。
基于这两者天壤之别,笔者有了深深的感触,上述两个案例让我想到一个相同的问题,就是我们常说的备课之先“备学生”到底备到什么程度?对于学生的知识前测,教师心中有多大的把握?没有对学情准确的侦察”,便绝对不会”打赢”有效教学乃至高效教学这一胜仗。很多教师在备学生的时候,是借用别人的眼光来估计自己的学生,看教参上是怎么说的。教参说这时的学生应该具有什么样的知识经验,教师便坚信自己的学生也定是如此了。没有或者很少考虑到虽然是同一个年龄段的孩子,但还有诸多不同的因素:也许你的学生是后进的,他的基础没你想象的那么牢固;也许他是绝顶聪明的,学习进度已经超过好多课业了。
如上述案例中,关注学生转化的思想就是本课时教学的重中之重.数学知识有着本身固有的结构体系,往往是新知孕伏于旧知,旧知识点是新知识点的生长点,数学教学如何让知识体系由点到线,线到面,使知识结构“见木又见林”是十分必要的。案例1从整数乘法迁移到分数乘整数,想法是可取的,但整数乘法的意义在二上年级就已经出现,而且教材中没有出现整数乘法的抽象表达方式(即整数乘法表示求几个相同加数的和),对于五下年级的学生来说,遗忘程度可想而知。而案例2中,以五上年级的分数加法为基础,让学生自由探索,效果是非常明显的。转化是需要条件的,只要“跳一跳”,就能摘到“桃子”,学生才会去尝试。
今天这节课的算理看似简单,其实理解还是有困难的.根据学生的认知心理,在遇到一个陌生的问题,如”1/5×3=?”时,学生对算法的兴趣远远胜于算理.因为算法可以直接得到结果。一旦知道算法,多数学生会对算理失去兴趣。甚至为了考试成绩去死记硬背算理,算法与算理完全脱离。那么我们实际上不是教数学,而是在教一门计算程序:不是在培养研究者,而是在训练操作工。这与”学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的思想方法和必要的应用技能”相违背的。
数学思想方法内容十分丰富,学生一接触到数学知识,就联系上许多数学思想方法。寓理于算的思想就是小学数学中的基本思想方法。在教学时,把重点放在让学生充分体验由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和对算法的切实把握。小学是打基础的教育,有了算理的支撑,算法才会多样化,课堂才会更开放。
课标中,原来讲“双基”,现在变成“四基”,多了基本思想、基本活动经验,笔者认为,只有具备了基本思想、基本活动经验,才能在思维上促进基本知识、基本技能的发展。不但教给学生一个表层的知识,更要给学生思维的方法与思想。
《分数乘整数》教学反思篇6
在教学分数乘整数之前,班里已经有不少学生知道了分数乘整数的计算方法。如果按照一般的教学程序进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去学习的兴趣。于是在教学时,我提出:“为什么结果是9/10?为什么要把分子与整数相乘?”接下来的教学就引导学生带着“为什么”去学习。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过在老师给的练习纸上涂色来得到结果;有的学生讲清了为什么将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了结果。
存在的一些问题。
让学生体会先约分比较简单时,出现了些问题。在做完例题第二个问题之后,依然有不少学生依然觉得先计算好,于是我就出示了四道题,其中最后一题数据较大,可以很好的引导学生得出正确的结论。但我现在觉得,如果在例题教学完之后就直接完成那个8/11×99,这样就更加直接了,学生立刻就能体会到先约分的好处了,那么再做其它需要进行约分的题目就方便了。
《分数乘整数》教学反思篇7
[教学内容]
人教版小学六年级数学(下册)第8页例1及相关练习)
[教材及学情分析]
本节课教学的主要内容是折扣的含义及解决有关实际问题。这是承接六年级上册求简单的百分率编排的。教材安排了两个例题,先从学生熟悉的商城打折的生活情境中引出对打折含义的解释,再具体说明“几折”所表示的意义。例1情境引导学生解决两个问题,第一个问题是已知原价和折数,求现在售价,这是让学生明白折扣的含义后,求一个数的百分之几是多少。第(2)题再次变换条件,已知原价和折扣后,求便宜的钱数,以让学生灵活运用知识解决实际问题。
教材还通过做一做的习题,是学生理解折扣含义的基础上,利用百分数解决实际问题。练习二的练习题除了巩固用折扣解决实际问题,还通过创设各类解题情境,让学生明白生活中的商业折扣与数学上的百分数之间是相互联系的。
[教学目标]
1、让同学们在商品打折销售的情境中理解“折扣”的意义。
2、在掌握“求一个数的百分之几是多少”这种问题的基础上自主解决问题,培养同学们解决实际问题的能力。
3、养成独立思考、认真审题的学习习惯。
[教学重点]
会解答有关折扣的实际问题。
[教学难点]
合理、灵活地选择方法,解答有关折扣的实际问题。
[教法与学法]
引导交流,合作探究
[教学准备]
白板课件收录机等物品
[教学过程]
一、谈话引入,揭示课题
师:同学们,你们喜欢购物吗?你有什么购物的体验吗?今天我们一起来学习有关购物的知识吧。
师板书:折扣
二、明确学习目标
白班出示学习目标,让生读中理解,明确学习任务。
三、创设情景
师:请同学们观察老师拍摄的几组图片,想一想生活中在哪些地方见过这些图片?
生:商场。
师生:搞什么活动?
生:打折销售商品。
(从学生的身边例子唤起对“折扣”的回忆,激起学生的学习兴趣。)
四、教学新知
1、明确概念,理解折扣”的含义。
白板出示概念(商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几十),引导学生识记。
2、初步计算,熟悉百分数与折扣之间的正确转化。
(这一设计,目的让学生熟练掌握折扣的百分数表示方法,为后的应用做铺垫。)
3、情境体验
通过观察购物的情境图,体会“八五折”表示的实际含义。
(这一设计,目的让学生理解“几折”的数学表示,为将学习求折扣的应用题做铺垫。)
4、初步应用
如果原价是100元的毛衣,打七折,猜一猜现在的价钱会是多少元?
5、解决例题
(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。现在买这辆车用了多少钱?
6、活动:我是小小销售员
(通过模拟商场购物的真实情景,让每一位学生参与现场购物活动,在活动中感受打折扣促销的具体场景。)
7、解决例题
(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
(将例题(2)放到此处教学的目的是让学生熟练了解决简单的一步计算的问题后,探究较复杂的问题,有利于分散难点,提高学习效率。)
五、巩固练习
活动1:看你有多棒
妈妈给小强买了一套运动服,原价120元,现在打七五折出售,比原来便宜多少元?
(让学生说思路,了解学生是否掌握此类题目的解决方法。)
活动2:考考你
一辆自行车,七折出售后是700元,它的原价是多少元?
(学生熟悉了已知原价和折扣求现价的方法后,进行变式练习,实现举一反三,触类旁通的目的。)
活动3:轻松过关
说说下面每种商品打几折出售?
(1)一辆汽车按原价的90%出售。
(2)一座楼房按原价的96%出售。
(3)一只旧手表按新手表价格的80%出售。
(设计意图:通过简单的练习,让学生在轻松的学习活动中巩固所学知识。)
活动4:我是小法官
判断对错:
(1)商品打折扣都是以原商品的价格作为单位“1”,即标准量。()
(2)一件上衣现在打八折出售,就是说比原价便宜了10%。()
(通过辨别练习,深化对概念的理解。)
六、拓展延伸
活动5:考考你的智力(课件出示题目)
(在学生进行了一系列的练习活动后,适当设置有难度问题,有利于激发学生的探究欲望,将课堂教学活动推向一个新的高度。)
七、课堂小结
谈谈这节课我们学会了什么?你有什么收获?
八、课后作业
双休日到附近的商场调查一下促销活动中的不良现象,写一篇简单的调查报告。
《分数乘整数》教学反思篇8
教学内容
北师大版小学数学六年级上册教材第9页~第11页。
课前思考
本节课的教学目标非常明确:利用学具合作探究圆的周长的测量方法,发现圆的周长与它的直径之间的关系,从而推导出圆的周长计算公式;能运用公式解决一些简单的数学问题。以此教学目标为指导,为了能抓牢学生的注意力,激发起他们主动参与课堂活动的兴趣,课堂上李老师组织学生积极利用圆片、卷尺、绳子等学具进行探究,使教、学具在数学课堂上的作用得以体现。
课堂写真
(教师利用课件出示两种自行车图片,学生观察。)
师:你会选择哪一辆参加我校组织的自行车比赛呢?
生:第一辆。
师:为什么选择第一辆自行车呢?
生:因为它的轮子大,跑得快。
师:为什么它跑得快呢?
生:因为它滚一圈的长度长。
师:对!轮子大,滚一圈的长度也就长。我们把车轮滚动一圈的长度就叫作它的周长。那么这两款自行车车轮的周长到底是多少呢?谁能帮助我们解决这个问题?
生:我们可以通过测量的方法得到车轮的周长呀!
师:你的反应很快。那么如何测量呢?这是需要我们思考的问题!下面就请同学们小组合作,利用小圆片及其他学具探究圆的周长吧!
(学生开始讨论,操作学具,2分钟后,每个小组都有了各自的测量方法。)
[分析] 李老师从学生的生活出发,利用多媒体课件出示自行车的车轮让学生首先明确“圆的周长”的意义,接着引导学生思考如何得到圆的周长。在学生想到测量方法时,李老师又鼓励学生用手中的学具探究测量圆的周长的方法。在她的主导作用下,学生积极主动地参与了学习,给这节课开了一个好头。
师:哪个小组愿意先来晒一晒你们的测量方法?
生:我们第一小组先来。我们组是在圆形纸片的边缘标一个起点,然后把它放在直尺上,让这个起点对准零刻度,最后把纸片沿直尺滚动一圈,就得到它的周长了。
师:嗯!这是个不错的方法,但请同学们思考:如果有一个很大的圆形游泳池,要测量它的周长,我们能把它放在直尺上滚动一圈吗?
[分析] 让学生操作学具展示自己的测量方法,锻炼他们的动手能力,有了学具的参与,学生用事实说明了问题。同时也促进了他们的合作能力和语言表达能力。接着,李老师又提出了新的问题,为后面的课程做铺垫。
生:下面请听一听我们第二小组的方法。我们小组是用绳子绕圆片一周得到它的周长,所以我们也可以用绳子绕圆形游泳池一周,再测量出绳子的长度,不就测量出了圆形游泳池的周长了吗?
(说完,大家为第二小组的同学们鼓起了掌。)
师:大家对你们的方法已经做出了肯定,这个测量方法的确很棒!
(此时,第二小组同学们的脸上露出了得意的笑容,就在这时,老师拿出一根绳子,绳子的一端系着一个小球,接着将绳子在空中旋转起来。)
师:同学们请看,小球走过的路线是什么形状呢?
生:是一个圆形。
(这时,教师转向第二组的同学并提问。)
师:如果想得到这个圆的周长,还能用你们小组的这种绕线测量的方法吗?
生:不能。
[分析] 第二小组同学们利用绳子、直尺等学具创设了“绕线法”解决了问题后,李老师再次提出了质疑,这次的问题更难解决,也让同学们进一步意识到测量方法的局限性。
师:第三小组的同学,你们有什么好方法?
(第三小组派代表发言。)
生:我们可以把系有小球的绳子放在纸片上,固定一端,拉紧绳子,旋转一周,用笔描画出小球的运动路线,然后将这个圆剪下来,再利用之前同学们说的滚动或者绕线的方法测量出这个圆的周长,不就解决了这个问题吗?
(同学们听完后,恍然大悟,都夸赞第三小组的同学聪明,此时的他们心里美滋滋的。)
师:你们组的想法很有创意,但大家有没有想过,这个小球的运动方式就好比公园里巨大的摩天轮,如果要得到摩天轮的周长,这个方法还可行吗?
生:不可行。
师:看来,用测量的方法得到圆的周长具有一定的局限性,而且测量中也存在误差,数据不够精确,我们还要像研究长方形或正方形的周长那样,找到一个科学普遍的公式来计算圆的周长。
生:圆的周长与什么有关?有怎样的关系?
师:请利用你们手中的学具合作探究吧!
(同学们通过操作学具,经历测量、填表、计算、观察等活动,终于发现了圆的周长是它的直径的3倍多一些。再结合教材推导出了圆的周长计算公式,心中的成就感和自豪感油然而生。)
[分析] 同学们带着心中的疑惑去探究,目的明确,再加上小组合作,合理的分工,充分利用学具,让每一个学生都有事可干,教室里气氛活跃而井然有序。经过学生自己的努力,他们终于发现了圆的周长与它的直径之间的3倍多一些的关系,也推导出了圆的周长计算公式。
课后解读
数学课堂中应用教具、学具,能锻炼学生的动手操作能力和思维能力,使他们对知识有更深刻的认识和理解。本节课李老师就是利用教具学具紧紧抓住了学生们的注意力,让他们通过一系列的操作活动积极主动地获取了新知,让学生在“玩”中学、“学”中玩,使大家印象中枯燥的数学课变得活跃起来。