教师资格证数学教学设计
教学设计需要综合考虑教学资源和教学环境。教学设计不仅仅关注教师的教学活动,还需要考虑教学资源和教学环境的支持和配合。同时,教学设计也要考虑教室布置和管理,创设良好的学习氛围和互动环境,促进学生的积极学习和合作。现在随着小编一起往下看看教师资格证数学教学设计,希望你喜欢。
教师资格证数学教学设计【篇1】
分数的基本性质
第一课时
一、教学内容
教材第75页的例1,第76页“做一做”的第1题及第77页练习十四的第1一5题。
二、教学目标
1.知识与技能:通过教学,使学生归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2.过程与方法:培养学生的迁移类推能力、抽象概括能力和观察能力。
3.情感与态度:让学生体会到数学知识间的内在联系,感受学习数学知识的价值。
三、重点难点
抽象概括出分数的基本性质。
四、教具准备
每人3张同样的正方形或长方形纸片。
五、教学过程
(一)导入
1.直接口答下面各题的商,说说是怎样想的?根据什么知识?
120 ÷20 = ( 12O×3)÷(30 ×3 ) = ( 120 ÷10)÷(30 ÷10 ) =
(二)教学实施
1.教学教材第75页的例1。
让学生拿3张同样的正方形或长方形纸片,分别对折一次、两次、四次,平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。
提示:你发现了什么?板书:
=
=
为什么相等?
2.引导学生观察它们的分子、分母各是按照什么规律变化的?学生以小组为单位讨论,请代表发言。
随着学生汇报,老师板书。
(从左往右观察)(从右往左观蔡)
3.提问:你还能举出这样的例子吗?
学生举例,老师分别板书出来。
4.观察以上例子,你得出什么结论?(学生讨论,汇。)板书:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
提问:为什么0要除外?(学生讨论)
小结:分子和分母如果都乘上0,则分数成为
,而分数的分母不能为O;又因为0不能作除数,所以分数的分子和分母也不能同时除以O。
5.提问:你能不能根据分数与除法的关系和商不变的性质来说明分数的基本性质?
6.完成教材第76页“做一做”的第1题。说一说自己是怎样想的?学生根据分数的基本性质思考并说明思路。
7.完成教材第77页练习十四的第1题。
学生先独立涂色,范文,然后比较大小并说明理由。
8.完成教材第77页练习十四的第2题。学生独立完成,说一说是怎样比较的?可以把
化成
,也可以把
化成
,再比较。
9.完成教材第77页练习十四的第3题。
学生两人一组,由一人说一个分数,另一个人说出一个相等的分数。
10.完成教材第77页练习十四的第4题。
引导学生先应用分数的基本性质,判断哪几个分数是相等的,然后在直线上把这个点画出来。
老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。
11.完成教材第77页练习十四的第5题。
进行口答练习。
(四)思维训练
1.一个分数的分母不变,分子乘3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?
2.在下面的括号里填上适当的数。
9÷15 =
=
= 6÷()=()÷6
(五)课堂小结
通过本节的学习,知道了什么是分数的基本性质,并会应用分数的基本性质解决一些简单的数学问题。
教师资格证数学教学设计【篇2】
教学目标:
1.知识与技能目标:学会并掌握乘法结合律,可以用乘法结合律来解决数学问题。
2.过程与方法目标:通过学生独立思考、探究,培养学生的自学能力及探究意识。通过学生主动发言,训练学生的发散思维。
3.情感态度价值观目标:引导学生养成细心的良好习惯,产生对数学学习的兴趣,更加喜欢数学。
教学重点:
学会并掌握乘法结合律,培养学生的自学能力及探究意识。
教学难点:
引导学生养成细心的`良好习惯,更加喜欢数学。
教学过程:
一、创设情境,引入新课
教师引导学生:“六一”儿童节快要到了,为了给大家过一个印象深刻并且富有意义的节日。羊村长带小羊们给他们的村落植树。多媒体展示图片,图片上呈现植树的情景,请同学们算一算,一共需要给这些小树浇多少桶水呢?该如何列式呢?
请同学们独立思考,你会怎样解决这个问题呢。
二、自主探究,学习新知
1.教师引导学生独立思考,探究方法。请学生回答。
预设:先计算一共种了多少棵树,可以这样列式:
先计算一组同学浇多少桶水,可以这样列式:
教师鼓励同学想法的独特性、新颖性,接下来引导学生观察这两个式子的关系:
2.小组交流讨论
顺势抛出问题:请大家小组讨论交流,再举出几个这样的例子。
将同学们的讨论结论呈现在大屏幕上。
教师引导:从上面的算式中,你能发现什么?
明确:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。
教师表扬同学们观察认真,语言表述准确,并总结:这叫做乘法结合律。
3.引入符号,加强符号意识
教师引导:同学们,你们能用字母表示乘法结合律吗?
引出:
此时同学们头脑中除了乘法的交换律与结合律,同时还会浮现加法的交换律与结合律。
再次抛出问题:请同学们比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?
请同学们各抒己见,发散思维,完善知识结构,深入剖析知识本质。
三、巩固运用,实践创新
出示教材做一做,填一填,看谁填得又快有准。
四、总结体会,反思提升
通过本节课的学习,你有哪些收获?
师生共同总结:乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。
五、课后作业,拓展延伸
寻找身边的生活例子,用乘法结合律来解决问题。
六、板书设计
教师资格证数学教学设计【篇3】
教学目标:
1、给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变。
2、能利用所学的知识解释生活中的一些现象。
3、通过有趣的观察、操作、想象等活动,发展空间观念。
重点难点:
给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围所观察点而改变。
一、创设情境,生成问题
师:在上课之前,我们先来欣赏一段麦当劳的广告。
师:刚在看广告的时候,很多人都笑了,你们为什么笑?
生:坐在摇椅上摇,一会儿能看到麦当劳的标志,一会儿又看不到。
师:那他什么时候能看到,什么时候又看不到呢
生:当摇椅摇在高处的时候,他看得到,当摇椅摇在低处的时候,他就看不到,因为他的视线被墙壁挡住了。
师:恩,这位同学讲得真好。是的,在刚才广告中,摇椅摇在低处时,宝宝的视线受到了墙壁的阻挡,所以他就看不见麦当劳的标志,而当摇椅摇到高处的时候,视线没有受到阻挡,宝宝就能看见麦当劳的标志了。看来我们观察的范围会受到一些因素的影响,这节课我们就来研究《观察的范围》。(板书课题)
二、探索交流,解决问题
师:一天,住在一楼的淘气来到窗前,他想看看外面的停车场,他能看到吗?
生:不能。他的视线被墙挡住了。
师:那墙就是一个障碍物,对吧?
师:可是淘气真的很想看见外面的停车场,他应该怎么办?
生:爬楼
师:聪明的淘气也想到了,他赶紧爬上去,他总算能看见外面了,那他到底都能看见墙外的哪些地方呢?谁愿意到前面来指一指。
(鼓励学生到图上指一指)
师指墙角边的那辆车:这个位置三楼的淘气能看见吗?为什么?
生:不能看见,因为他的视线受到了墙壁的遮挡。
师:那他到底能够看到多大的范围呢?我们在图上该如何表示呢?自己在练习纸上试一试,同桌之间也可以交流一下。
这其实就是淘气的一条视线,眼睛就是观察点,围墙上的一点就是障碍点,是虚线。
学生充分发言后(边说便在图上标注出来并指出可观察的范围)
师:回忆一下我们刚才是怎样找到淘气的观察范围的?
生:
师:我们把淘气的眼睛作为观察点,围墙的右上端作为障碍点,把两点用虚线连接起来并延长,这条视线的右边就是淘气的观察范围。
师:可是淘气还想看到剩下的这几辆车,他应该怎么办?请同学们自己画一画,找找四楼五楼淘气的观察范围。
指名画,并说出画法(发现三条视线的观察点不同,障碍点不变),找出可以看到的范围。
师:观察三条淘气的视线及淘气的观察范围,你发现了什么?
生:淘气站得越高,他看到的车子越多,他的观察范围越大。
师:也就是说,你们认为淘气的观察范围和什么有关?有什么样的关系?谁能试着总结一下。
生:观察点越高,观察的范围越大;观察点越低,观察的范围越小。
课件出示,全班齐读。
师:原来观察的范围会随着观察点的高低变化而变化,也难怪唐代诗人王之涣留下了这样的名句:欲穷千里目,更上一层楼。
师:解决了淘气的难题之后,我们一起到科技馆看看。
科技馆就在左边的大楼上,你们看见了吗?
我们坐车来到来到一这个地方,能看见科技馆。
生:能。
师:大家都说能,怎么证明呢?
生:画淘气的视线。
师:好,请一位同学说,老师来画。
我们的车缓缓向科技馆驶进,来到位置二的地方,我们还能看见科技馆吗?谁能来说一说。
师:好,谁能来描述一下,车从一开到二,我们看到的科技馆大楼是如何变化的?
师:那你能看出来,在这道题中,我们的观察范围又和什么有关呢?有怎样的关系?
生:观察的范围与观察点的远近有关,观察点越近,观察的范围越小,观察点越远,观察的范围越大。
课件出示,全班齐读。
师:通过刚才的研究,我们发现观察范围与观察点的高低及远近都有密切的关系,那你们有注意过自己在路灯下的影子吗?当我们在路灯下来回走动时,我们的影子会发生怎样的变化?
生:
师:是不是一下长一下短的呢?
师:为什么会发生这样的现象呢,研究了下面这道题,你就会明白了。
独立完成
师:指名画,说说你是怎样画的?
生:灯泡是观察点,……
师:那影子在什么地方?
师:为什么影子在这里?而不在那里
生:影子应该是光线到不了的地方,是盲区。
师:恩,真棒。
师:
那同样高的杆子,离路灯的距离与所形成的影子有什么关系,你们得到结论没有,把结论读出来。
生:同样高的杆子离路灯越近,影子就越短。
师;反之,离路灯越远,影子就越长。
师:今天我们所学的知识不仅能解决路灯下影子变化的现象,还能解决发生在太空的现象,下面就让我们来看看很有名的日蚀现象。
(课件演示)大家都知道猫和老鼠是一对天敌,有只小老鼠躲在一堵墙的后面,有只猫在墙的前面吃食,小老鼠在哪个位置是安全的呢?(生试着指一指)那么小老鼠的安全活动区域是哪些范围呢?你们能帮助老鼠画出它的安全活动范围吗?动手画在答题纸上。
展示汇报。
那小猫稍微移动了自己的位置,这范围还是安全的吗?看来猫鼠大战又将掀开精彩的一页了。
三、回顾整理,反思提升
通过今天的学习,你有哪些收获呢?本节课的知识在日常生活中用处很大,看在太空中我们也能利用今天所学的知识去解释一些现象呢。(课件出示月食日食现象)有兴趣的同学可以课下继续研究,里面的奥秘会让你喜欢上的。
教师资格证数学教学设计【篇4】
教学内容:
北师大版六年级数学上册《观察的范围》课本第80、81页的内容。
教学目标:
1、给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程。
2、感受观察范围随观察点,观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。
3、通过观察、操作、想象等活动,发展空间观念。
教学重点:
经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变。
教学难点:
能用所学知识解决日常生活中的一些现象。
教学过程:
一、创设情境:
通过小游戏让学生在动手、动眼、动脑的同时给学生抽象点、线、区域及确定观察的范围埋下伏笔。
二、导入新课:
小游戏中的数学知识,增强学生求知欲望,展示课题:观察的范围
三、积极探究、发现规律
1、创设情境、引入问题。
桃树下落了一地桃子,小猴在墙外的树上向里张望。猜一猜,小猴爬在A、B、C三点哪一点看见的桃子最多?学生回答后,师:是否如你们所说的一样,咱们具体来探究一下。
2、引导画图,确定范围。
(1)你知道小猴在A处时,看到哪些部分?学生随便指。
(2)引导学生画出关键的一条线,确定离墙最近的点A/?从而确定观察范围。(教师演示)
(3)学生动手确定B、C、的观察范围。
通过比较,使学生充分理解“看到墙内离最近的点”和看到的“区域”的含义。
3、自主操作、感知发现。
比一比:小猴爬在A、B、C三点哪一点看见的桃子最多?
小猴爬得越高,看到得桃子越_,说明小猴看到的范围就越_。
怎样确定观察的范围?
1、找观察“点”。
2、确定遮挡物的“关键点”。
3、画出经过关键点的视线。
板书:观察点影响观察范围。
四、应用知识,解决问题。(设计意图:动手操作,应用所学知识解释生活中的现象)
场景一:教师先演示路灯下其中一根杆子的影子,再让学生试着画一画。引导学生发现同样高的杆子离路灯越近,影子就越短。
场景二:描述客车司机的观察范围,进一步理解观察点变影响观察范围变。
场景三:警察和小偷的较量,对学生具有一定的挑战性,教师应给予指导。小组合作、讨论,教师适当指导,运用课件演示。
五、全课小结:这节课你们学到了哪些知识。(边问边答并板书)
六、布置作业:
B楼的居民近期向刚刚建起的A楼的开发商表示抗议,你能试着说说为什么?
通过画一画,看出A楼挡主了B楼部分用户的阳光所以发生了争执。
教师资格证数学教学设计【篇5】
设计意图:
教学实践告诉我们,教学的成败,学生的学习效果如何,在很大程度上取决于学生的参与程度。教师的全部劳动,归根到底就是为了学生的主动学习。因此,激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的评价,包罗万象,既有对学习方法的评价,又有对学习情感的评价,也有对自己的鞭策鼓励。这样的评价,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。
教学要求
在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最大公约数,培养学生的观察能力。
教学重点
掌握求两个数的最大公约数的方法。
教学难点
正确、熟练地求出两种特殊情况的最大公约数。
教学过程
一、创设情境
1、思考并回答:
①什么是公约数,什么是最大公约数?
②什么是互质数?质数与互质数有什么区别?(回答后做练习十四的第5题)
2、求30和70的最大公约数?
3、说说下面每组中的两个数有什么关系?
7和21、8和15
二、揭示课题
我们已经学会求两个数的最大公约数,这节课我们继续学习求这两种特殊情况的最大公约数(板书课题)
三、探索研究
教学例3
(1)求出下列几组数的最大公约数:7和21、8和15、42和14、17和19
(2)观察结果:通过求这几组数的最大公约数,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第69页的结论。
(4)尝试练习。
做教材第69页的“做一做”,学生独立做后由学生讲评,集体订正。
四、课堂实践
1.做练习十四的第7题,学生独立观察看哪几组数是第一种特殊情况,哪几组数是第二种特殊情况,再解答出来。
2.做练习十四的第6题,先让学生独立作出判断后再让学生讲明判断的理由。
3.做练习十四的第9题,学生口答集体订正。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1、做练习十四的第8、10、11题。
2、有兴趣、有余力的同学可做练习十四的第13题和思考题。
课后反思:
有的数学问题比较复杂,光靠个人的学习,在短时间内达不到好的效果时,教学时,我让学生前后桌组成四人小组,小组中搭配上、中、下三类学生,由一位优等生任组长,组织组内同学讨论如下问题:
(1)、一个数的约数与这个数的质因数有什么联系?
(2)、两个数的公约数与这两个数公有的质因数有什么联系?
(3)、怎样求两个数的最大公约数?
我们知道“最大公约数”一课最难理解的就是其算理,我也尝试过多种不同的教学组织形式,但无论是老师讲解还是学生看书,给学生的感觉大多是:太难懂了,算了吧!这时,何不让学生讨论讨论,让他们把自己的想法在组内说说?
俗话说:三个臭皮匠顶一个诸葛亮。这样,不仅保证了全班同学的全员参与,使每位同学都有了发表自己见解的机会;而且通过小组之间的交流、启发、讨论、总结,学生的思路被打开了,想法在逐步完善着,学生个人对最大公约数算理的理解都会有不同幅度的提升;学生的归纳、推理、判断等能力也在这里得到提高;学生的合作意识,团结协作的精神也在不断增强;当自己的意见被采纳时,学生也在尽情地享受着交流成功的乐趣。如果学生能把学习当成一件“美差”去做,这不正是我们最想看到的吗?
教师资格证数学教学设计【篇6】
教学目标:
1、知识与技能目标让学生在模拟旅游情境中运用所学的数学知识和方法解决一系列“春游中的数学”问题。让学生感受生活中处处有数学,处处需要用数学。体验数学来源于生活,增强应用数学的意识。
2、过程与方法目标引导学生根据实际情况选择解决问题的方案,初步培养学生的优化意识。使学生体会解决问题的策略,并能在解决问题的过程中丰富自己的经验,提高自己的能力。
3、情感态度价值观目标在活动中感悟数学的价值,体会数学与生活的联系,激发学生学习数学的兴趣。通过学生的独立、合作探究,培养学生的独立思考,勇于探究的精神和合作交流的意识。培养学生养成勤俭节约的好习惯和热爱大自然的情感。体会“尊老爱幼,关爱他人”的美德。
教学重点:
学会解决旅游中的一些数学问题。培养学生应用数学知识解决问题的能力。
教学难点:
在解决问题时,学生能选择较合理的策略。感悟优化解决问题的方法。
教学媒体:
多媒体课件、活动表格。
教学过程:
一、创设情境,激趣导入,引出春游的课题
1、诗歌欣赏:《春天来了》,这是一首学生在语文考试中自己创作的诗。这么优美的诗,让我们感受到春天的美好,在这美好的春天里,同学们最想做的是什么?到大自然中去找春天。引出“春游”的课题。
2、你喜欢旅游吗?在旅游中要注意什么?今天,老师就带同学们一起去感受旅游的快乐,但在旅行的过程中我们会遇到一些问题,要同学们一起解决。让我们出发吧!
二、合作探究春游中的数学问题
1、选择合适的租车方案
(1)出示租车信息:一共有40人参加春游活动,有两种型号的车可供选择,大车租金每辆160元,限坐乘客18人,小车租金每辆120元,限坐乘客12人。请你算算怎样租车最省钱?
(2)先让学生估估、猜猜。与小组同学讨论后把租车方案填在课本上。
(3)租车方案怎样租车最省钱?
(4)汇报结果后总结方法:最省钱的策略是,车的座位如果不能坐满,空位必须尽可能少一些。因此,租1辆大车和2辆小车的方案最合适。
2、快餐店用餐
师:到达目的地,同学们玩得真开心,转眼到了吃中饭的时间了。导游把大家带到一家快餐店用餐,这里的食品真丰富,有凉菜、热菜、主食、饮料等。同学们可以自由选择你最喜欢的食品。
(1)与小组同学交流自己的观点,再把自己的选择填在课本的表格里,算出你的午餐一共花了多少钱?(提醒学生别浪费。)(2)汇报结果,看看大家都选了哪些营养又美味的食品。
3、买纪念品回家
师:在快乐的游玩中时间过得真快,到了该返回的时间了。导游把大家带到一家纪念品商店,让同学们买些纪念品带回家。
(1)与小组同学讨论,表达自己的观点:淘气遇到的问题怎么解决?为什么先给爷爷买拐杖?
(2)根据图中的信息回答问题。并提两个不同的数学问题,再解答出来。
(3)如果你有20元钱,你准备带什么纪念品回家?说说理由。
三、写数学日记
师:同学们,愉快的一天结束了,你一定玩得非常开心吧?而且用你所学过的数学知识解决了很多生活中的问题,你是最棒的!你是不是希望把你的快乐与大家一起分享呢?那就请你把它记下来吧。你这一天是怎么过的,在游玩的过程中解决了哪些数学问题?有什么感受?请按下面的格式写一篇数学日记。
四、课堂小结
1、通过这节课你有什么收获?
2、课后延伸:清明节到了,如果学校要带六年级的同学们去茅家岭烈士陵园扫墓,你能不能设计一个旅游计划?(填在课本第38页),下节课在班上和同学们一起讨论。请你试试吧。
教师资格证数学教学设计【篇7】
教学内容
教学内容:教材第10页例3以及课堂活动
教学目标
1、经历编乘法口诀的过程,知道乘法口诀的来源。
2、熟记1的乘法口诀。
3、会用1的乘法口诀口算相应的表内乘法。
教学重难点
教学重点:经历编乘法口诀的过程。
教学难点:会用1的乘法口诀口算相应的表内乘法。
教学准备
小棒
一、复习引入
1、对口令
①教师说算式,学生说口诀。
②教师说口诀,学生说算式。
2、摆小棒,说算式,说口诀。
每次摆2根,摆3次。
每次摆2根,摆6次。……
3、引入新课。
二、学习例3
1、摆小棒。一根一根地摆,边摆边说,1个1、2个1、……9个1
2、根据摆的情况,说算式。1个1是1、2个1是2、……9个1是9
板书:1×1=1
1×2=2
1×3=3
……
1×9=9
观察算式,你发现这些算式有什么特点?
3、编口诀。
①小组活动,你能编出这些乘法的口诀吗?组长记录。
②全班反馈。教师板书:一一得一
一二得二
……
一九得九
4、全班交流讨论,说一说如:“一二”是表示什么?“得二”又表示什么?
同桌交流。
5、记口诀。①你怎样记住这些口诀?
②熟记口诀。
三、课堂活动
说算式,对口诀。
1×3————一三得三
……
四、课堂小结:这节课我们学习了什么?你还有什么问题?
板书设计
1的乘法口诀
1×1=1一一得一
1×2=2一二得二
1×3=3一三得三
…………
1×9=9一九得九
教师资格证数学教学设计【篇8】
教学内容:
教科书第p4~P5例5~例6、P5“试一试”、“练一练”P6~P7练习一第6~8题
教学目标要求:
1.使学生进一步理解并掌握等式的性质,即在等式两边同时乘或除以同一个不等于0的数,结果仍然是等式。
2.使学生掌握利用相应的性质解一步计算的方程。
教学重点:
使学生进一步理解并掌握等式的性质,即在等式两边同时乘或除以同一个不等于0的数,结果仍然是等式。
教学难点:
使学生掌握利用相应的性质解一步计算的方程。
教学过程:
一、复习等式的性质
1.前一节课我们学习了等式的性质,谁还记得?
2.在一个等式两边同时加上或减去同一个数,所得结果仍然是等式。那同学们猜想一下,如果在一个等式两边同时乘或除以同一个数(除以一个数时0除外),所得结果还会是等式吗?
3.生自由猜想,指名说说自己的理由。
4.那么,下面我们就通过学习来验证一下我们的猜想。
二、教学例
1.引导学生仔细观察P4例5图,并看图填空。
2.集体核对
3.通过这些图和算式,你有什么发现?
X=202x=20×2
3x3x÷3=60÷3
4.接下来,请大家在练习本上任意写一个等式。请你将这个等式两边同时乘同一个数,计算并观察一下,还是等式吗?再将这个等式两边同时除以同一个数,还是等式吗?能同时除以0吗?
5.通过刚才的活动,你又有什么发现?
6.引导学生初步总结等式的性质(关于乘除的)乘或除以0行吗?
7.等式性质二:
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
8.P5“试一试”
⑴指名读题
⑵你是根据什么来填写的?
三、教学例
1.出示P5例6教学挂图。
指名读题,同时要求学生仔细观察例6图
2.长方形的面积怎样计算?
3.根据题意怎样列出方程?你是怎么想的?板书:40X=960
4.在计算时,方程两边都要除以几?为什么?
5.计算出X=24后,我们怎样才能确定这个数是否正确?请大家口算检验一下。最后将例6填写完整。
6.小结:在刚才计算例6的过程中,我们将方程的两边都同时除以40,这是为什么?为什么将等式两边都同时除以40,等式仍成立?
7.P5练一练
解方程:X÷0.2=0.8
师巡视并帮助有困难的学生。
练习后指名让学生说一说:你是怎样解方程的?为什么可以这样做?
四、巩固练习
1.要使下面每个方程的左边只剩下x,方程两边应同时乘或除以几?
0.6x=7.2方程两边应同时
x÷1.5=0.6方程两边应同时
2.化简下列各式
8X÷850+X-40
X÷9×9X-1.4+1
3.P6第7题
教师引导学生列方程
4.p7第8题解方程带“★”写出检验过程
X+0.7=14★0.9x=2.45★76+x=91
x÷9=90★x-54=18★2.1x=0.84
五、课堂小结
这节课,你有什么收获?学到哪些知识?在解方程时,关键是什么?要注意什么?
六、作业
完成补充习题。
板书设计:
等式的性质和解方程
X=202x=20×240X=960
3x3x÷3=60÷3解:40X÷40=960÷40
X=24
等式两边同时乘或除以同一个不等于0的数,检验:把x=40代入原方程,所得结果仍然是等式。左边=40×24=960,右边=960
X=40是原方程的解。