比例的意义课堂实录人教版
教学实录还可以记录教学资源的使用情况,包括教材、教具、多媒体资源等。通过记录教学资源的使用效果,教师可以评估教材和教具的合理性和有效性,不断优化教学内容和教学设计,并利用专业发展机会提升自己的教学能力和水平。现在随着小编一起往下看看比例的意义课堂实录人教版,希望你喜欢。
比例的意义课堂实录人教版(精选篇1)
教学目标:
1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:
结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学关键:
理解成正比例的两个量的意义。
教学过程:
一、复习准备:
口答
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
课件出示:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。
特点是:
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是一定的。
4、正方形的面积与边长的比是边长,是一个不确定的值。
学生在小组内练说发现的规律,初步感知正比例的判定。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。
3、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。
4、正比例关系:观察思考成正比例的量有什么特征?
小结:
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的`量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。
追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)
(2)字母表达关系式。
如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)
(3)质疑。
师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
三、巩固练习
(一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
2、根据小明和爸爸的年龄变化情况
把表填写完整。父子的年龄成正比例吗?为什么?
(二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。
1、判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。
3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由
4、画一画,你会有新的发现。
彩带每米4元,购买2米、3米…彩带分别需要多少钱?
①填一填:(长度:米,价格:元)
②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?
板书:
正比例的意义
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是一定的
路程÷时间=速度(一定)总价÷数量=单价(一定)
=k(一定)
比例的意义课堂实录人教版(精选篇2)
教学目标
1、使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用,反比例的意义(参考教案二)。
2、能正确判断成正反比例的量,为解答正反比例应用题打下基础。
教学重点和难点
理解反比例的意义,掌握两种相关联的量变化规律。
教学过程设计
(一)复习准备
1、(出示幻灯)
一种练习本的数量和总页数如下表:
师:请回答下列问题。
(1)表中哪个量是固定不变的量?
(2)哪两种量是相关联的量?它们的变化规律是怎样的?
(3)表内相关联的两种量成正比例吗?为什么?
2、填空。(小黑板(一))
两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中__,这两种量叫做成__的量,它们的关系叫做__关系。
3、判断下面各题中两种量是否成正比例。
(1)文具盒的单价一定,买文具盒的个数和总价( )。
(2)水稻产量一定,水稻的种植面积和总产量( )。
(3)一堆货物一定,运出的和剩下的( )。
(4)汽车行驶的'速度一定,行驶的时间和路程( )。
(5)比值一定,比的前项和后项( )。
可选其中一、二题,说一说为什么?
师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)
(二)学习新课
1、出示例4(小黑板(二))
例4 华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:
(1)分析表,回答下列问题。(幻灯出示)
①表中有哪种量?
②两种相关联的量是如何变化的?
③你能说出它们的关系式吗?
④相对应的每两个数的乘积各是多少?
⑤哪种量是固定不变的?
师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)
(2)同学们发言。
比例的意义课堂实录人教版(精选篇3)
素质教育目标
(一)知识教学点
1.使学生理解正比例的意义。
2.能根据正比例的意义判断两种量是不是成正比例。
(二)能力训练点
1.培养学生用发展变化的观点来分析问题的能力。
2.培养学生抽象概括能力和分析判断能力。
(三)德育渗透点
1.通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩证唯物主义观点的启蒙教育。
2.进一步渗透函数思想。
教学重点:使学生理解正比例的意义。
教学难点:引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。
教具学具准备:投影仪、投影片、小黑板。
教学步骤
一、铺垫孕伏
用投影逐一出示下列题目,请同学回答:
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
二、探究新知
1.导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。
2.教学例1
(1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米……
(2)出示下表,并根据上述内容填表。
一列火车行驶的时间和所行的路程如下表
(3)边填表边思考:在填表过程中,你发现了什么?
学生交流时,使之明确。
①表中有时间和路程两种量。
②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米……时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
教师点拨:
像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:两种相关联的量)
③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。
教师问:根据计算,你发现了什么?
引导学生得出:相对应的两个数的比值都是60或都一样,固定不变等。
教师指出:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)
④比值60,实际就是火车的速度。用式子表示它们的关系就是:
(4)教师小结:
刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。
3.教学例2
(1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
(2)观察上表,引导学生明确:
①表中有数量(米数)和总价这两种量,它们是两种相关联的量。
②总价随米数的变化情况是:
米数扩大,总价随着扩大;米数缩小,总价也随着缩小。
③相对应的总价和米数的比的比值是一定的。
④比值3.1,实际就是这种花布的.单价。用式子表示它们的关系就是:
(3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)
4.抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论,这两个例子有什么共同点?
(2)学生初步交流时引导学生明确:
①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量;
②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。
教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)
③例1中路程与时间的比的比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。
(学生答不出来时,教师引导、点拨,并补充板书:两种量中)
(3)引导学生抽象概括出两例的共同点:
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。
(4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
(补充板书:如果这成正比例的量正比例关系)
这就是我们这节课学习的“正比例的意义”(板书课题)
(5)看书19、20页的内容,进一步理解正比例的意义。
(6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。
(7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
(9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
5.教学例3
(1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
(2)根据正比例的意义,由学生讨论解答。
(3)汇报判断结果,并说明判断的根据。
教师板书:
面粉的总重量和袋数是两种相关联的量。
所以面粉的总重量和袋数成正比例。
6.反馈练习
让学生试做第21页的做一做,并订正。
三、巩固发展
1.完成练习三第1题。
先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?
2.完成练习三第2题的(1)-(9)
先让学生自己判断,再订正。
四、全课小结(师生共同进行)
通过这节课的学习,你都知道了什么?怎样判断两种量是否成正比例?
比例的意义课堂实录人教版(精选篇4)
【学习目标】
1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。
3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。
【学习重点】
理解反比例函数的意义,确定反比例函数的解析式。
【学习难点】
反比例函数的解析式的确定。
【学法指导】
自主、合作、探究
教学互动设计
【自主学习,基础过关】
一、自主学习:
(一)复习巩固
1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.
2.一次函数的解析式是:;当时,称为正比例函数.
3.一条直线经过点(2,3)、(4,7),求该直线的解析式.
以上这种求函数解析式的方法叫:
(二)自主探究
提出问题:下列问题中,变量间的对应关?可用怎样的函数关系式表示?
1.如图K-3-8,已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.
(1)当y1-y2=4时,求m的.值;
(2)过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若△PBD的面积是8,请写出点P的坐标(不需要写解答过程).
26.1.2反比例函数的图象和性质:课文练习
1.下面关于反比例函数y=-3x与y=3x的说法中,不正确的是( )
A.其中一个函数的图象可由另一个函数的图象沿x轴或y轴翻折“复印”得到[
B.它们的图象都是轴对称图形
C.它们的图象都是中心对称图形
D.当x>0时,两个函数的函数值都随自变量的增大而增大
比例的意义课堂实录人教版(精选篇5)
教学目标:
1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。
2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:
理解比例的意义基本性质。
教学难点:
应用比例的意义和性质判断两个比是否成比例。
教学过程
一、导入新课
1、什么叫比?
2、求出下面各比的比值(小黑板)
12:16 1/4:1/3 和9:12 4.5:2.7 10:6
二、教学新课
1、教学比例的意义
(1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?
(2)归纳比例的意义
(3)2:5和80:200能组成比例吗?你是怎样判断的`?
(4)完成第45页“做一做”
2、教学比例的基本性质
(1)在一个比例里,有四个数,这四个数分别叫什么名字?
(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。
(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?
(4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
(5)指导学生完成第一46页“做一做”第1题。
三、巩固练习
四、课堂小结
这节课你学到了哪些知识?
创意作业:
有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。
x
教学内容:
比例的意义和基本性质 (省义务教材第十二册)
教学目标:
1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。
2、利用比例知识解决实际问题。
3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学过程:
一、 谈话导入,创设情境:
出示CAI课件(一张微型照片)。你能看出这是杭州哪一个景点的照片?的确,照片太小了,那现在老师将这张照片按一定比例放大一些,。由此出现一张平湖秋月的风景照。【诱发审美注意】
我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
二、 自主探究,学习新知
(一) 教学比例的意义
1、 8厘米
出示
6厘米
4厘米
3厘米
(1)根据表中给出的数量写出有意义的比。
(2)哪些比是相关联的?
(3)根据以往经验,可将相等的两个比怎样?(用等号连接)
教师并指出这些式子就是比例。
2、 让学生任意写出比例,并让学生用自己的语言描述比例的意义。
3、 教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。
4、 写出比值是1/3的两个比,并组成比例。
(二) 教学比例的基本性质
1、 比例和比有什么区别?
2、 认识比例的各部分
(1)让学生自己取。
(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的
外项,中间的两项叫做比例的内项。
板书: 8 : 6 = 4 : 3
内 项
外 项
(3)让学生找出自己举的比例的内外项。
( )
12
2
( )
=
(4)找出分数形式比例的内外项位置又是怎样的?
3、 出示 【启迪学生思维,展开审美想象】
(1) 这个比例已知的是哪两项,要求的又是哪两项?学生试填。
(2) 学生反馈,教师板书。
(3) 你发现了什么?
(4) 指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。
4、 用比例性质验证你所写比例是否正确。
5、练习 8 : 12 = X : 45
0.5
X
20
32
=
求比例中的未知项,叫做解比例。
如何证明你的解是正确的?
(三) 小结:今天这堂课你有什么收获?
三、 巩固练习
1、下面哪几组中的两个比可以组成比例。
4
1
12 : 24 和18 : 36
0.4 : 和0.4 : 0.15
14 : 8 和7 : 4
5
2
2、根据18 x 2 = 9 x 4 写出比例。【体会到数学的逻辑美,规律美】
3、从1 、8、0.6、3、7五个数中
(1) 选出四个数,组成比例。
(2) 任意选出3个数,再配上另一个数,组成比例。
(3) 用所学知识进行检验。
四、 实际应用
不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”
同学们,如果你是汪骏强,你准备怎么办?
执教者 方 艳
比例的意义课堂实录人教版(精选篇6)
教学内容
教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。
教学目标
1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
教学重点
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
教学难点
理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教学准备
教具:多媒体课件。
学具:作业本,数学书。
教学过程
一、联系生活,复习引入
(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
(2)揭示课题。
教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?
教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。
二、自主探索,学习新知
1.教学例1
用课件在刚才准备题的表格中增加几列数据,变成表。
教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:
2.教学试一试
教师:我们再来研究一个问题。
课件出示第52页下面的试一试。
学生先独立完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的'量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)
3.教学议一议
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
4.教学课堂活动
教师:请大家说一说生活中还有哪些是成正比例的量。
三、夯实基础,巩固提高
(1)完成练习十二的第1题。
教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
学生独立思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
四、全课小结
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
比例的意义课堂实录人教版(精选篇7)
教学目标:
1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。
2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。
教学重、难点:
重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学准备:CAI课件
教学过程:
一、复习、导入
1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?
2、 课件显示:算出下面每组中两个比的比值
⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]
二、认识比例的意义
(一)认识意义
1、 指名口答上题每组中两个比的比值,课件依次显示答案。
师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)
2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。
(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)
最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)
数学中规定,像这样的一些式子就叫做比例。(板书:比例)
[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]
3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?
(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)
5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比 比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]
(二)练习
1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
第一次
第二次
买练习本的钱数(元)
1.2
2
买的本数
3
5
(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第一题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、教学比例各部分的名称
(1) 课件出示: 3 : 5
前项 后项
(2) 课件出示:3 : 5 = 18 : 30
内项
外项
(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
三、探究比例的基本性质
1、课件先出示一组数:3、5、10、6
再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)
2、 独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答板书: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、 引导发现规律
(1)还有不同的.乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。
⑵学生任意写一个比例并验证。
⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
四、 综合练习
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判断下面哪一个比能与 1/5:4组成比例。
①5:4 ② 20:1
③1:20 ④5:1/4
4、在( )里填上合适的数。
1.5:3=( ):4
=
12:( )=( ):5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]
五、全课总结(略)
比例的意义课堂实录人教版(精选篇8)
教学内容:教材第42~44页例4~例6,“练一练”,练习八第4—7题。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:认识反比例关系的意义。
教学难点:掌握成反比例量的变化规律及其特征。
教学过程:
一、复习旧知
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、教学新课
1.教学例4。
出示例4。让学生计算,在课本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例5。
出示例5。
请同学们按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么,再提问:这两种相关联量变化的规律是什么?(板书:每袋重量和袋数的积一定)乘积8000是什么数量,这种数量关系用式子怎样表示?[板书:每袋重量×袋数=糖果总重量(一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)
3.概括反比例的意义。
(1)综合例4、例5的共同点。
提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例4、例5里两种相关联的量,它们是什么关系的量呢?请同学们看第43页倒数第二节。说明:像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。
4.具体认识。
(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例5里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)做练习八第4题。
让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]
(4)判断。
现在回过来看开始写的'关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例6。
出示例6,学生读题、思考。提问:怎样判断成不成反比例?哪位同学说说每本的页数和装订的本数成不成反比例?为什么?【板书;每本的页数×本数=纸的总页数(一定)】请同学们看书上例6是怎样判断的,看看我们说得对不对。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?
三、巩固练习
用刚才我们说的判断方法来做几道题。
1.做“练一练”第l题。
指名学生口答,说明理由。(可以写出数量关系式看一看)
2.做“练一练”第2题。
指名口答,说说理由。思考时可以引导看数量关系式。
3.做练习八第5题。
让学生先在书上判断。指名口答,要求说出数量关系式判断。
4.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
5.做练习八第6题。
各人先在书上写各成什么比例。指名口答,要求说明理由。
6.做练习八第7题。
先让学生默读题目。提问:题里有怎样的关系式?(板书:圆柱底面积×高=体积)指名学生口答.
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
练习八第7题。