比例的基本性质教学设计
教学设计需要满足实际教学需求,不断进行反思和优化,能够适时调整教学的实施方式和方法,更好地为学生成长和发展服务。包括时间的安排、教学环境的营造、教学活动的设计等方面,让教学全面优化。现在随着小编一起往下看看比例的基本性质教学设计,希望你喜欢。
比例的基本性质教学设计篇1
【教材分析】
《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40”教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:
“2.4×40○1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;(2)没有给学生想想的猜想和验证的空间。
【教学目标】
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
【教学重点】探索并掌握比例的基本性质。
【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。
【教学设想】:
1、教学情境的呈现
创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。
教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(),两个內项的积是(),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。
2、教学方式的选择
教育的真谛应该是促进人的发展,人的发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。
比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。
3、练习的设计
(1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的`方法进行比较优化,凸显了比例基本性质的应用价值。
(2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的逆用,又旨在渗透有序思考的解决问题策略和方法。
(3)如果a×2=b×4,则a:b=():(),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。
(4)猜猜我是谁?6:()=5:4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。
【教学预设】
一、认识比例各部分的名称
1、呈现:4:5和8:10
(1)认识吗?叫什么?
(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)
(3)求比值,判断两个比能否组成比例。
2、介绍比例各部分的名称
4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。
3、你能说出下面比例的内项和外项各是多少吗?
(1)1.4:=:5(2)=
二、探究比例的基本性质
1、猜数
呈现比例“12∶□=□∶2”。
(1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……
(2)这样的例子举得完吗?
2、猜想
仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)
3、验证
(1)是不是所有的比例都有这样的规律呢,有什么好办法?
(2)你觉得应该怎样举例呢?
(3)合作要求
1)前后4个同学为一个小组;
2)每个同学写出一个比例,小组内交换验证。
3)通过举例验证,你们能得出什么结论?
4、小结
(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?
比例的基本性质教学设计篇2
第一课时比例的意义
教学内容:
比例的意义(教材第40页的内容)
教学目标:
1、理解和掌握比例的意义。
2、了解比和比例的区别与联系。
2、能用比例的意义判断两个比能否组成比例。
教学重难点:
1、认识比例,理解比例的意义。
2、在已有知识的基础上,结合实例引出新的知识。
教具准备:
情景图、多媒体课件、习题卡。
教学过程:
一、导入
出示课题:比例
看到课题你想到了以前学过的什么知识?(生1,生2等回答)
我们已经了解了比的这些知识,请做下面练习。
求下面各比的比值。
18:453:52.7:4.5
求完比值你觉得哪些比有联系?
【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】
“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?
师:相机板书:3:5=2.7=4.5?
今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?
板书完整课题:比例的意义
二、揭题示标。
预设:生:1、比例的意义是什么?
生:2、比例的意义有什么作用?
(师趁机板书在黑板右上角)
【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】
本节课我们就来完成这两个目标:
三、自主探索
出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?
【设计意图:对学生同时进行思想品德教育和爱国教育】
生各抒己见。
你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。
自学指导:
1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。
2、发现了什么有趣的现象?
3、把你的发现尝试用算式写下来。
(5分钟后,期待你精彩的分享)
【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】
(二)自学
学生认真看书自学,教师巡视,督促人人都在认真地思考。
(三)汇报分享
谁愿意把你的结果和大家分享?师相机板书
(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…
原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。
我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。
【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】
师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。
生:…
师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。
出示“比例的意义”概念
擦去开始板书中的“?”并把比例可用分数形式表示板书出来
【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】
师:你能说一说组成比例要具备哪些条件吗?
生:…
师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?
生:…
【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】
四、当堂检测(牛刀小试)
下面各比能组成比例吗?你是怎样判断的?请写出计算过程。
(1)3:7和9:21
(2)15∶3和60∶12
五、当堂训练:
1、把下面的式子进行归类:
(5)72:8=3X3(6)3.6:6=0.6
比:()
比例:()
思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?
2、判断:
(1)、有两个比组成的式子叫做比例。()
(2)、如果两个比可以组成比例,那么这两个比
的比值一定相等。()
(3)、比值相等的两个比可以组成比例。()
(4)、0.1∶0.3与2∶6能组成比例。()
(5)、组成比例的两个比一定是最简的整数比.()
六、拓展提升(思绪飞扬)
1、写出比值是7的两个比,并组成比例。
2、12的因数有(),从12的因数中挑选4个数组成比例是()。
3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?
设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握
七、全课总结
今天这节课你有什么收获?
八、课堂作业
第43页第2、3题。
九、抽查清。(每组4号同学完成)
判断下面每组中的两个比能不能组成比例。
30:5和48:812:0.4和3:5
十、板书设计
比例的意义
表示两个比相等的式子叫做比例。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
十一、教学反思:
本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:
1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。
2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。
3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。
4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。
5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。
比例的基本性质教学设计篇3
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
二、教学重点难点
重点: 理解比例的意义和基本性质。
难点:判断两个比是否成比例。
三、教学过程设计
(一)创设情境,提出问题
1. 复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天 第二天
运输次数 2 4
运输量(吨) 16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少? (16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
比
4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和 9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例.
6∶3 和 8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4 和 6
因为 2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
(三)回顾总结
在这节课中你又有什么新的收获?
比例的基本性质教学设计篇4
教学内容
九年义务教育六年制小学数学第十二册第10~11页。
教学过程
一、创设情境
师:什么叫比例?下面每组中的两个比能否组成比例?出示:
1/3∶1/4和12∶9; 1∶5和0.8∶4; 7∶4和5∶3; 80∶2和200∶5
学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4=12∶9 7∶4≠5∶3 1∶5=0.8∶4 80∶2=200∶5
师:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项(板书:外项、内项)。
师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。
同学们在窃窃私语:什么是比例的基本性质?好奇心一下子被激发了。
二、自主探究
师:同学们,比例中的两个外项与两个内项之间存在着一种关系,你能发现吗?
大家默默地观察着上面的几个比例,不一会儿,一些学生脸上露出惊喜的神色,按捺不住激动的心情,开始转身与周围的同学交流,教室里的气氛有点热闹起来。
师:请将你的发现告诉你的同伴。不过——,你先要好好想想,你所发现的是不是偶然现象?最好能举些例子验证一下,以免闹出笑话,好吗?
这下,学生们又静了下来,认真地思考着老师的问题,许多学生在纸上写着比例进行着验证。
师:现在,请前后四人为组,将你发现的规律与同伴交流一下,看看大家是否同意?
学生在小组内进行着热烈的交流和讨论,并积极代表小组进行汇报。
生:我们发现了这样一个规律,比例中的两个外项的乘积与两个内项的乘积是相等的。我们还自己写了比例,发现这个规律是正确的。
教师将学生所举比例故意写成分数形式3/8=6/16,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书:
师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。
教师的这一问,还真把一部分学生给吓着了。不过,大家很快发现老师把比例写错了。
生:(机灵地)老师,你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。
师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。
板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。
三、巩固反思
师:现在,你们能运用比例的基本性质,判断两个比能否组成比例吗?出示:6∶3和8∶5;0.2∶2.5和4∶50 ;6∶2和9∶3,
有学生回答“因为3与8两个内项的积不等于6与5两个外项的积,所以,这两个比不能组成比例。教师对此引导学生展开严密的思考,假如6:3和8:5是能够组成比例的,则两个外项的积必定等于两个内项的积,而现在3与8的积不等于6与5的积,所以,假设是错的,也就是6∶3和8∶5这两个比是不能够组成比例的。
对于这一反例的判断,教师没有简单地让学生就事论事,而是不断地让学生就事论理,在说理的过程中不断地加深对比例性质的理解,同时进行较为严格的逻辑思维训练,培养学生的语言表达能力。
师:如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?
问题一提出,学生就积极地尝试着写比例,不一会儿,学生争着要在投影上展示自己所写的比例。有趣的是,学生将数字移来移去,有的比例重复出现,有的比例则被遗漏,台下的学生不停地为台上的伙伴出主意,有些学生忍不住喊着“我来”,教室里气氛热烈……针对学生用尝试的方法出现重复或遗漏的现象,教师激发引导说:同学们学习的热情很高,但仅凭热情往往还不能有效地解决问题,象这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出?根据比例的基本性质,若把2放在内项的位置上,那么,9应该放在什么位置上?把2和9同时放在内项位置上,共能写出几个比例?2和9只有同时放在内项的位置上吗?学生受到启发,写出了所有的比例。在学生经历这样一番尝试实践的基础上,教师引导学生反思体验:用尝试的方法去一个一个地写,还是从比例的基本性质出发进行有序思考,你们觉得哪种方法能更有效地解决问题?学生自然体会到后者更好,并表示会这样思考问题了。
师:你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。
结果,有相当一部分学生仍是尝试,终于发现这四个数是不能组成比例的。对此,教师问学生:你们都是先试着写,然后发现不能组成比例的吗?有学生回答:比例中两个内项的积等于两个外项的积,这四个数若能组成比例,其中必有两个数的积等于另外两个数的积,而且只可能是较大的两个数的积等于中间两个数的积,而现在3×8≠4×5,所以,这四个数一定不能组成比例。该生的回答,使学生再一次受到启发,教师对其从比例的
基本性质出发进行思考作出判断给予充分肯定。
师:你能从3、4、5、8中换掉一个数,使之能组成比例吗?
许多学生凭籍直觉很快把“5”换成“6”,教师在给学生肯定后继续追问:若要换下其中的任意一个数,你行吗?这一问题将学生的思维引向深入。经过独立思考、集体讨论,大家将要换上的数用字母x表示,由比例的基本性质建立多个不同的方程,求出各方程的解,有效地解决了问题。
师:同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。
比例的基本性质教学设计篇5
教学内容:
比例的基本性质
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:
理解比例的基本质性。
教学难点:
能运用比例的基本性质判断两个比能否组成比例。
教学过程:
一、复习导入
1.什么叫做比例?什么样的两个比才能成比例?
2.应用比例的意义,判断下面的比能否组成比例。
6:15和8:20 0.5: 0.4和2:25
二探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。 例如:外项
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
(2)学生认一认,说一说比例中的外项和内项。
如:2 :4 =3 :6
外 内 内 外
项 项 项 项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1) 学生独立探索其中的规律。
(2) 与同学交流你的发现。
(3) 汇报你的发现,全班交流。
(4) 举例说明,检验发现。
如:2.4:1.6 = 60:40
板书:两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
外项的积等于内项的积。
如果把比例改成分数形式呢?
2.460如:= 1.640
2.4×40=1.6×60
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5) 归纳。
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
3、判断两个比能否组成比例
应用比例的基本性质,判断下面的两个比能否组成比例。如果能组成比例,把组成的比例写出来。
3.6 : 1.8 和 0.5 : 0.25
(1.8)×( 0.5 )=(0.9)
(3.6)×(0.25)=(0.9)
3.6 : 1.8 = 0.5 : 0.25
三、巩固练习
1.填一填。
41.6(1)= 0.50.2
4 × 0.2=( )×( )
(2)0.8:1.2=4:6
( )×( )=( )×( )
(3)4×5=2×10
4:( )=( ):( )
2.做一做。
完成课文中的“做一做”。
四、课堂小结
(1) 说一说比例的基本性质。
(2) 你可以用什么方法来判断两个比能否组成比例?
比例的基本性质教学设计篇6
教学内容:
补充有关比例意义、基本性质和解比例的练习
教学目标:
1.进一步理解和掌握比例的意义,能根据比例的意义判断两个比能否组成比例。
2.进一步理解和掌握比例的基本性质,能根据比例的基本性质正确判断两个比能否组成比例,进一步掌握解比例的方法。
3.通过练习,让学生在思考、交流中培养分析、概括能力,体会数学知识之间的联系,感受数学学习的乐趣。
教学措施:
帮助学生系统整理前几节课学习的数学知识;设计一些有针对性的练习;练习过程中注重分析学生练习情况,加强课堂上对学习困难生的辅导。
教学准备:
上传补充练习
教学过程:
一、整理知识
1.提问:前几节课我们学习了比例的意义、基本性质和解比例这三部分内容。你有哪些收获?请你和同桌交流一下。
2.学生同桌之间进行交流。
3.指名学生交流,教师相机板书,将知识点进行梳理和归纳。
4.揭示课题:运用比例的意义和比例的基本性质可以解决一些数学问题。这节课我们继续学习有关内容。(板书课题)
二、基本练习
1.判断。
(1)比例是一个等式。
(2)甲数和乙数的比值是2/3,如果甲、乙两个数同时扩大3.5倍,它们的比值还是2/3。
(3)比例的两个内项减去两个外项的积,差是0。
(4)任意两个正方形的周长与边长的比都可以组成比例。
(5)如果A╳9=B╳6(A、B均不为0),那么,A与B的比是3:2。
组织学生思考、交流,鼓励学生完整地说出自己的分析推理过程。
2.根据下面的等式,写出几个不同的比例。
3╳40=8╳15
(1)现在已知的是一个等式,等式左、右两边的两个数分别是写出的比例中的什么?
(2)你能有序地写出所有的比例,既不重复也不遗漏吗?(学生独立完成) (3)学生交流思考过程,教师及时讲评:可以先把3和40作为比例的内项,写出四个比例;然后再把8和15作为内项写出另外四个比例。
3.判断四个数10.5、5/4、20/21、8能否组成比例?
(1)要判断四个数能否组成比例有哪些方法?(根据比例的意义或比例基本性质)
(2)你认为这里选择哪种方法比较方便?
(3)指名学生交流后,学生写出比例。
小结:如果给我们四个数,要让我们判断能否组成比例,一般,我们可以运用比例的基本性质来判断比较简便。基本方法是先将这四个数从大到小排列,然后用最大数乘最小数,中间两数相乘,看看乘积是否相等,最后根据比例基本性质来写出不同的比例。
4.按要求组成比例。
(1)从2、10、4.5、9、5五个数中选出四个组成一个比例。
(2)从18的所有约数中选出四个组成一个比例。
(3)把8和9作两个外项,比值是1/2的一个比例。
(4)给5、8、0.4三个数分别配上一个不同的数,组成两个不同的比例.
逐个出示题目,学生练习之前先要弄清题目要求。
学生完成后进行交流,要求说说自己的思考过程,教师及时评价。
教师要及时关注学生存在的问题及时辅导。
5.根据比例的基本性质,在括号里填上合适的数。
15:3=( ):1 2:0.5=12:( )
0.3/4=( )/32 7/9:( )=1/2:3/5
( )/12=3/18 ( ):4.5=0.4:9
先让学生根据比例基本性质来思考并求出括号中的数,然后请学生交流思考过程。
三、解比例
25:7=X:35 514: 35= 57:x 23:X= 12:14 X:15=13: 56
2、根据下面的条件列出比例,并且解比例
a. 96和X的比等于16和5的比。
b. 45 和X的比等于25和8的比。
c. 两个外项是24和18,两个内项是X和36 。
四、全课总结
通过本节课的学习,你又有哪些收获?你还有什么问题没有弄明白吗?
四、布置作业
补充相应练习
比例的基本性质教学设计篇7
教学内容:
教科书第9—10页比例的意义和基本性质.练习四的第1—3题。
教学目的:
使学生理解比例的意义和基本性质。
教学过程:
一、教学比例的意义
1.复习。
(1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。
(2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?
教师板书出下面几组比,让学生求出它们的比值。
12:16 :1 4·5:2.7 10:6
学生求出各比的比值后,再提
“请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?
这就是这节课我们要学习的内容。(板书课题:比例的意义)
2.教学比例的意义。
(1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。
板书:第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40, 200:5=40。让学生观察这两个比的比值。再提问:
“你们发现了什么?”(这两个比的比值都是40。)
“所以这两个比怎么样?”(这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2=200:5或 = )像这样(指着这个式子和复习题的式子4. 5:2.7=10:6)表示两个比相等的式子叫做比例。
指着比例式80:2=200:5,提问:
“谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。
“从比例的意义我们可以知道.比例是由几个比组成的?这两个比必须具备什么条件:因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的 比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一限看出两个比是不是相等?可以先分别把两个比化简以后再看。例如判断10;12和35:1:这两个比能不能组成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上举例边说边板书。)
(2)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(3)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表 示;不能就用两手的食指交叉表示。)
6:3和12:6 35:7和45:9
20:5和.16:8 0.8:0.4和 : :
学生判断后,指名说出判断的根据。
②做第10页的“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。
④做练习四的第3题。
对于能组成比例的四个数,把能组成的比例写出来:组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。
二、教学比例的基本性质
1.教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书第10页看第6行到9行。看看什么叫比例的项、外项、内项。(学生看书时,教师板书:80:2=200:5)
指名让学生指出板书出的比例的外项、内项。随着学生的回答教师接着板书如下:
80 :2=:200 :5
内项
外项
2.教学比例的基本性质。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个内项的积是2×200=400
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。
“通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。
最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200
3.巩固练习。
教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以
3:4和6:8可以组成比例。(边说边板书:3:4=6:8)
(2)做第11页“做一做”的第1题。
三、小结
教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
四、作业
练习四的第2题。
比例的基本性质教学设计篇8
教学目标:
1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。
2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。
教学重、难点:
重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学准备:
CAI课件
教学过程:
一、复习、导入
1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?
2、 课件显示:算出下面每组中两个比的比值
⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]
二、认识比例的意义
(一)认识意义
1、 指名口答上题每组中两个比的比值,课件依次显示答案。
师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)
2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。
(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)
最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)
数学中规定,像这样的一些式子就叫做比例。(板书:比例)
[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]
3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?
(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)
5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比 比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]
(二)练习
1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
第一次
第二次
买练习本的钱数(元)
1.2
2
买的本数
3
5
(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第一题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、教学比例各部分的名称
(1) 课件出示: 3 : 5
前项 后项
(2) 课件出示:3 : 5 = 18 : 30
内项
外项
(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
三、探究比例的基本性质
1、课件先出示一组数:3、5、10、6
再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)
2、 独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答板书: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、 引导发现规律
(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。
⑵学生任意写一个比例并验证。
⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
四、 综合练习
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判断下面哪一个比能与 1/5:4组成比例。
①5:4 ② 20:1
③1:20 ④5:1/4
4、在( )里填上合适的数。
1.5:3=( ):4
=
12:( )=( ):5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]