2023高中数学教学设计模板

|梦荧

在教学工作者开展教学活动前,就难以避免地要准备教案,那么如何做好每节课的教案呢?以下是小编整理的一些2023高中数学教学设计模板,欢迎阅读参考。

2023高中数学教学设计模板

2023高中数学教学设计模板(篇1)

一、单元教学内容

(1)算法的基本概念

(2)算法的基本结构:顺序、条件、循环结构

(3)算法的基本语句:输入、输出、赋值、条件、循环语句

二、单元教学内容分析

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的`基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

三、单元教学课时安排:

1、算法的基本概念 3课时

2、程序框图与算法的基本结构 5课时

3、算法的基本语句 2课时

四、单元教学目标分析

1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

五、单元教学重点与难点分析

1、重点

(1)理解算法的含义 (2)掌握算法的基本结构 (3)会用算法语句解决简单的实际问题

2、难点

(1)程序框图 (2)变量与赋值 (3)循环结构 (4)算法设计

六、单元总体教学方法

本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

七、单元展开方式与特点

1、展开方式

自然语言→程序框图→算法语句

2、特点

(1)螺旋上升 分层递进 (2)整合渗透 前呼后应 (3)三线合

一 横向贯通 (4)弹性处理 多样选择

八、单元教学过程分析

1. 算法基本概念教学过程分析

对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

2.算法的流程图教学过程分析

对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

3. 基本算法语句教学过程分析

经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

4. 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

九、单元评价设想

1、重视对学生数学学习过程的评价

关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

2、正确评价学生的数学基础知识和基本技能

关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

2023高中数学教学设计模板(篇2)

教学目标

(1)理解四种命题的概念;

(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

(3)理解一个命题的真假与其他三个命题真假间的关系;

(4)初步掌握反证法的概念及反证法证题的基本步骤;

(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力、

教学重点和难点

重点:四种命题之间的关系;难点:反证法的运用、

教学过程设计

第一课时:四种命题

一、导入新课

【练习】1、把下列命题改写成“若p则q”的形式:

(l)同位角相等,两直线平行;

(2)正方形的四条边相等、

2、什么叫互逆命题?上述命题的逆命题是什么?

将命题写成“若p则q”的形式,关键是找到命题的'条件p与q结论、

如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题、

上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”、

值得指出的是原命题和逆命题是相对的、我们也可以把逆命题当成原命题,去求它的逆命题、

3、原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真、但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真、

学生活动:

口答:

(1)若同位角相等,则两直线平行;

(2)若一个四边形是正方形,则它的四条边相等、

设计意图:

通过复习旧知识,打下学习否命题、逆否命题的基础、

二、新课

【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题、

【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

学生活动:

口答:若一个四边形不是正方形,则它的四条边不相等、

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题、把其中一个命题叫做原命题,另一个命题叫做原命题的否命题、

若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定、

【板书】原命题:若p则q;

否命题:若┐p则q┐、

【提问】原命题真,否命题一定真吗?举例说明?

学生活动:

讲论后回答:

原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真、

原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真、

由此可以得原命题真,它的否命题不一定真、

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性、

教师活动:

【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

学生活动:

讨论后回答

【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题、

教师活动:

【提问】原命题“正方形的四条边相等”的逆否命题是什么?

学生活动:

口答:若一个四边形的四条边不相等,则不是正方形、

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题、把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题、

原命题是“若p则q”,则逆否命题为“若┐q则┐p、

【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真、

原命题真,逆否命题也真、

教师活动:

【提问】原命题的真假与其他三种命题的真

假有什么关系?举例加以说明?

【总结】1、原命题为真,它的逆命题不一定为真、

2、原命题为真,它的否命题不一定为真、

3、原命题为真,它的逆否命题一定为真、

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性、

教师活动:

三、课堂练习

1、若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?

学生活动:笔答

教师活动:

2、根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?

学生活动:讨论后回答

设计意图:

通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系、

教师活动:

略。

2023高中数学教学设计模板(篇3)

教学目标

1.了解映射的概念,象与原象的概念,和一一映射的概念.

(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;

(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

3.通过映射概念的学习,逐步提高学生对知识的探究能力.

教学建议

教材分析

(1)知识结构

映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

(2)重点,难点分析

本节的教学重点和难点是映射和一一映射概念的形成与认识.

①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;

映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

教法建议

(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

教学设计方案

2.1映射

教学目标(1)了解映射的概念,象与原象及一一映射的概念.

(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.

(3)通过映射概念的学习,逐步提高学生的探究能力.

教学重点难点::映射概念的形成与认识.

教学用具:实物投影仪

教学方法:启发讨论式

教学过程:

一、引入

在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

二、新课

在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

我们今天要研究的是一类特殊的对应,特殊在什么地方呢?

提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?

让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)

提问2:能用自己的语言描述一下这几个对应的共性吗?

经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

2023高中数学教学设计模板(篇4)

[学习目标]

(1)会用坐标法及距离公式证明Cα+β;

(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

[学习重点]

两角和与差的正弦、余弦、正切公式

[学习难点]

余弦和角公式的推导

[知识结构]

1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

4、关于公式的正用、逆用及变用

2023高中数学教学设计模板(篇5)

教学目标

(1)了解算法的含义,体会算法思想。

(2)会用自然语言和数学语言描述简单具体问题的算法;

(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。

教学重难点

重点:算法的含义、解二元一次方程组的算法设计。

难点:把自然语言转化为算法语言。

情境导入

电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:

第一步:观察、等待目标出现(用望远镜或瞄准镜);

第二步:瞄准目标;

第三步:计算(或估测)风速、距离、空气湿度、空气密度;

第四步:根据第三步的结果修正弹着点;

第五步:开枪;

第六步:迅速转移(或隐蔽)

以上这种完成狙击任务的方法、步骤在数学上我们叫算法。

课堂探究

预习提升

1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。

2、描述方式

自然语言、数学语言、形式语言(算法语言)、框图。

3、算法的要求

(1)写出的算法,必须能解决一类问题,且能重复使用;

(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。

4、算法的特征

(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。

(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。

(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。

(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。

(5)不唯一性:解决同一问题的算法可以是不唯一的

课堂典例讲练

命题方向1对算法意义的理解

例1、下列叙述中,

①植树需要运苗、挖坑、栽苗、浇水这些步骤;

②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;

③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;

④3x>x+1;

⑤求所有能被3整除的正数,即3,6,9,12。

能称为算法的个数为(  )

A、2

B、3

C、4

D、5

【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。

【答案】B

[规律总结]

1、正确理解算法的概念及其特点是解决问题的关键、

2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、

【变式训练】下列对算法的理解不正确的是________

①一个算法应包含有限的步骤,而不能是无限的

②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤

③算法中的每一步都应当有效地执行,并得到确定的结果

④一个问题只能设计出一个算法

【解析】由算法的有限性指包含的步骤是有限的故①正确;

由算法的明确性是指每一步都是确定的故②正确;

由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;

由对于同一个问题可以有不同的算法故④不正确。

【答案】④

命题方向2解方程(组)的算法

例2、给出求解方程组的一个算法。

[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、

[规范解答]方法一:算法如下:

第一步,①×(-2)+②,得(-2+5)y=-14+11

即方程组可化为

第二步,解方程③,可得y=-1,④

第三步,将④代入①,可得2x-1=7,x=4

第四步,输出4,-1

方法二:算法如下:

第一步,由①式可以得到y=7-2x,⑤

第二步,把y=7-2x代入②,得x=4

第三步,把x=4代入⑤,得y=-1

第四步,输出4,-1

[规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。

2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。

【变式训练】

【解】算法如下:S1,①+2×②得5x=1;③

S2,解③得x=;

S3,②-①×2得5y=3;④

S4,解④得y=;

命题方向3筛选问题的算法设计

例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、

[思路分析]比较a,b比较m与c―→最小数

[规范解答]算法步骤如下:

1、比较a与b的大小,若a

2、比较m与c的大小,若m

[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。

【变式训练】在下列数字序列中,写出搜索89的算法:

21,3,0,9,15,72,89,91,93

[解析]1、先找到序列中的第一个数m,m=21;

2、将m与89比较,是否相等,如果相等,则搜索到89;

3、如果m与89不相等,则往下执行;

4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。

命题方向4非数值性问题的算法

例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。

(1)设计安全渡河的算法;

(2)思考每一步算法所遵循的共同原则是什么?

2023高中数学教学设计模板(篇6)

1.教学目标

(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

2.使学生加深对数形结合思想和待定系数法的理解;

3.增强学生用数学的意识.

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

2.教学重点.难点

(1)教学重点:圆的标准方程的求法及其应用.

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

当的坐标系解决与圆有关的实际问题.

3.教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导] 画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

将x=2.7代入,得 .

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

答:x2 y2=r2

2.如果圆心在 ,半径为 时又如何呢?

[学生活动] 探究圆的方程。

[教师预设] 方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为 ①

把①式两边平方,得(x―a)2 (y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i.直接应用(内化新知)

问题三:1.写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在 ,半径为 ;

(3)经过点 ,圆心在点 .

2.根据圆的方程写出圆心和半径

(1) ; (2) .

ii.灵活应用(提升能力)

问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

[教师引导]由问题三知:圆心与半径可以确定圆.

2.已知圆的方程为 ,求过圆上一点 的切线方程.

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率-垂直)

方法二:待定系数法(利用代数关系求斜率-联立方程)

方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3.你能归纳出具有一般性的结论吗?

已知圆的方程是 ,经过圆上一点 的切线的方程是: .

iii.实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

3.求圆x2 y2=13过点(-2,3)的切线方程.

4.已知圆的方程为 ,求过点 的切线方程.

2023高中数学教学设计模板(篇7)

一、教学目标

知识与技能:

理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:

1、提高学生的推理能力;

2、培养学生应用意识。

二、教学重点、难点:

教学重点:

任意角概念的理解;区间角的集合的书写。

教学难点:

终边相同角的集合的表示;区间角的集合的书写。

三、教学过程

(一)导入新课

1、回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课

1、角的`有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:

注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?

2、象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?

    442798