《对数函数及其性质》教学反思

|育祥

教师要克服教学反思中的惰性思维,避免虚假的自我评价,同时注重实践经验的沉淀和分享,不断提高自己的教学水平。现在随着小编一起往下看看《对数函数及其性质》教学反思,希望你喜欢。

《对数函数及其性质》教学反思

《对数函数及其性质》教学反思精选篇1

一、教材分析

本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.

二、学情分析

大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数函与指数函数的学习,学生已多次体会了对立统

一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.教具及软件运行环境说明 教具采用多媒体,黑板等形式展开

信息技术设备设置:通过借助计算机多媒体呈现指数函数与对数函数图像 应用环境及软件的说明:软件为在windows下运行的matlab7.0

三、设计思路

学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,利用几何作图软件运行各种指数函数及对数函数,通过比较/类比等方法使学生对对数函数的认识更加深刻。教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的

.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.

四、教学目标

1、知识与技能,理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能.

2、过程与方法,通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一.

3、情感态度与价值观,通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的科学意识.

五、重点与难点

重点 :(1)对数函数的概念;(2)对数函数的性质.难点 :(1)对数函数与指数函数之间的关系.

六、过程设计及师生互动

(一) 复习导入

(1)复习提问:什么是指数函数?指数函数的图象和性质如何?

学生回答,并用课件展示 指数函数的图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理 解新知识清除了障碍,有意识地培养学生分析问题的能力。

(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的 反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

(二) 讲授新课 (1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函

y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数 让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。 (2)对数函数的图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如 何画对数函数的图象呢

让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以 根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。 教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我 们利用两种方法画对数函数的图象。

h(x)?log2x,f(x)?log3x,方法一(描点法)首先列出x,y(q(x)?logx,g(x)?logx)

1123值的对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,

8···,请计算对应的y 然后在坐标系内描点、画出它们的图象.方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再

示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和

性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。 (3)对数函数的性质

在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0

设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养 学生的创新能力有帮助学生易于接受易于掌握,而且利用表格,可以突破难点。

由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件) 设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质, 认识两个函数的内在联系提高学生对函数思想方法的认识和应用意识。

(三) 巩固练习P42-P45

(四)纳小结强化思想

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从 三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

课后反思:美好的时光总是短暂的请学生总结自己有何收获和体验,并交流。

七、教学评价方案

课堂教学是教学过程的中心环节,是教师和学生进行教学活动的主要形式,为了促进课堂教学改革,提高课堂教学质量,特制定本课堂教学评价方案: (1)、教学目标评价

教师能针对所教内容,结合《课程标准》科学、准确地设计教学目标,做到:

、目标明确,符合学生实际。目标的设置不可过高或过低。

2、“三维目标”全面、具体、适度,有可操作性,并能使知识目标,能力目标、情感、态度、价值观目标有机相融,和谐统一。

量化评价标准每项5分,总计10分。 (2)、教学内容评价

1、教师能准确把握所教学科内容的重点、难点,教授内容正确。

2、教学内容紧密联系学生的生活实际,激发学生去积极思维。

3、教师能从教学实际出发,转变教材观念,对教材进行科学有效的整合,以促进学生的学习,不唯教材,创新适用教材。

量化评价标准:第

1、2项各4分,第3项2分,总计10分。 (3)、教师行为评价

1、课堂上教师作为学生学习的组织者,是否能够有效地组织学生进行学习;作为学生学习的指导者,是否对学生的学习指导得有法、到位。培养了学生良好的学习习惯;是否创造了生动有趣的教学情境来诱发学生学习的主动性;作为学生学习的引导着,是否成为学生和课本之间的桥梁纽带,在教学活动中,发挥了自己的聪明才智和应有的作用;作为学生学习的合作者,是否能和学生一起学习,探究、倾听、交流。

2、教师能以学生为主体,重视知识的形成过程,重视学生学习方法的培养,重视学生的自学能力、实践能力,创新能力的发展。

3、课堂上能营造宽松、民主、平等的学习氛围,教态自然亲切,对学生学习的评价、恰当、具体、有激励性。

4、能够根据教材的重点、难点之处,精心设计问题,所提出的问题能针对不同层次的学生,问题的提出,恰到好处。能启发学生思考,促进学生知识的构建,并能给学生留有充分思考的时间,同时注重学生的“问题”意识,引导学生主动提出问题。

5、根据教学内容和学生实际,恰当地选择教学手段,合理运用教学媒体。

、课堂上,教师的讲解语言准确简练,示范操作规范,板书合理适用,教学有一定的风格和艺术性。

量化评比标准:第1项8分;第2项5分;第3项2分;第4项4分;第

5、6项各3分,总计25分。 (4)、学生行为评价

主要针对学生在课上的学习状态来评价。

1、看学生的学习状况,学生学习的主动性是否被激起,能积极地以多种感观参与到学习活动之中,精神振奋,有强烈的求知欲望。

2、看学生的参与状态,学生参与学习活动中的数量、广度和深度是衡量主体地位发挥的主要标志,学生要全员参与,有效参与。

3、看学生的学习方式。是否由被动学习变为主动学习,是否由个体学习到主动合作学习;是否由接受性学习变为探究性学习。

4、看学生在自主、合作、探究学习上的表现。 学生在学习过程中,是否全身心地投入、是否发现问题,提出问题,积极解决问题,是否敢于质疑,善于合作、主动探究并有实效,是否围绕某一问题彼此间能交流、讨论、倾听,提出有效建议。

5、看学生学习的体验与收获。 学生在学习过程中,90%以上的学生能够相互交流知识、交流、体会,交流情感由自悟——觉悟——感悟——醒悟,在获取丰富知识的同时形成了一定的学习能力。

量化评价评价标准:第1项8分;第2项3分;第3项6分;第4项8分;第5项2分;第6项8分,总计35分。 (5)、教学效果评价

1、看教学目标达成度如何,教师是否高度关注学生的知识 与能力、过程与方法、情感态度价值观的全面发展。

2、看教学效果的满意度,学生在教师的指导下,积极主动参与,90%以上的学生掌握了有效的学习方法,获得了知识,发展了能力,有积极的情感体验。

3、看课堂训练题设计,检测效果好。

量化评价标准:第1项4分;第2项7分;第3项4分。总计15分。 (6)、教学特色评价

教师在教学方式、方法上,知识的生成点上,教学机智与智慧上的闪光点,有不同寻常之处。

评价标准:具备上述中的某一点或几点评价。

分数:2---5分。

八、教学反思

在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化。注意知识前后的衔接及联系,形成知识框架,其次要了解学生认知规律,知识水平,以便因材施教,再次要处理好课堂教学中教师的教和学生的学的关系。 1 要有明确的教学目标 2 要能突出重点、化解难点 3 要善于运用现代化教学手段 4 根据具体内容,选择恰当的教学方法 5 关爱学生,及时鼓励

6 充分发挥学生主体作用,调动学生的学习积极性

《对数函数及其性质》教学反思精选篇2

一、教材分析

本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.

二、学情分析

大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数函与指数函数的学习,学生已多次体会了对立统

一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.

三、设计思路

学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.

四、教学目标

1、理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能.

2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想. .

3、通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一.

4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识.

五、重点与难点

重点 :(1)对数函数的概念;(2)对数函数与指数函数的相互转化.难点 :(1)对数函数概念的理解;(2)对数函数性质的理解.

六、过程设计

(一) 复习导入

(1)复习提问:什么是对数函数?如何求反函数?指数函数的图象和性质如何? 学生回答,并用课件展示 指数函数的图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理 解新知识清除了障碍,有意识地培养学生分析问题的能力。

(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的 反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

(二) 讲授新课 (1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函数 y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。 设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数 让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。 (2)对数函数的图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如 何画对数函数的图象呢

让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以 根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。 教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我 们利用两种方法画对数函数的图象。

方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,8···,请计算对应的y 然后在坐标系内描点、画出它们的图象.

方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再演 示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。 (3)对数函数的性质

在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0

设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养 学生的创新能力有帮助学生易于接受易于掌握,而且利用表格,可以突破难点。 由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件) 设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质, 认识两个函数的内在联系提高学生对函数思想方法的认识和应用意识。

(三) 巩固练习1.求下列函数的定义域:

(1)y?log(5?x)(2x?3)

(2)y?logax2(3)y?lg(4?x)

2.利用单调性比较下列两个数的大小

loga?12931loga?129

32(四)纳小结强化思想

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从 三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

课后反思:美好的时光总是短暂的请学生总结自己有何收获和体验,并交流。

《对数函数及其性质》教学反思精选篇3

1、设计问题系列,驱动教学。

问题是数学的心脏,本节课以6个问题为主线贯穿始终,以问题解决为教学线索,在教师的主导与计算机的辅助下,学生思维由问题开始,由问题深化。

2、借助信息技术突出重点、突破难点。

本节课的学习重点是对数函数的概念、图像和性质;学习难点是用数形结合方法从具体到一般地探索概括对数函数性质,为突出重点、突破难点,使用了以下信息技术:

(1)探究对数函数概念:课上播放PPT课件,学生总结三个“观察事例”中函数解析式的共同特征,概括到的形式,从而形成概念,突出学习重点。

(2)绘制对数函数图像:作图1,学生动手画图,初步感知对数函数图像,教师个别辅导,正投展示,对比分析作图结果,纠正作图错误,总结作图要点,培养学生作图基本功;作图2,设计课件,全体学生参与,自选底数绘制对数函数图像,从而加深了学生对定义的认识,增强了对图像的直观感知,突出学习重点。

(3)探究对数函数性质:对数函数性质的获得,需要借助对数函数图像。设计“动手实践2”,教师运用课件的动态演示功能,验证底数取定义范围内所有值时,对数函数的性质,学生操作课件“动手实践2”,通过拖动点“”,改变底数的值,观察对数函数图像随底数的变化情况,学生的亲身体验,提高了对研究过程的参与程度,有效突破学习难点。

(4)运用课件“演示””功能,使得大量图像共享成为可能,使得学生小组代表发言活动得以实施,提高了学生对研究过程的参与程度,使得学习效率明显提高,更为有效地突破学习难点。

《对数函数及其性质》教学反思精选篇4

美国学者波斯纳(Posner)指出:“没有反思的经验是狭隘的经验,至多只能成为肤浅的知识。如果教师满足于获得经验而不对经验进行深入的思考,那么他的教学水平的发展将大受限制,甚至会出现滑波。”我通过自己第一次参加晋中市优质课大赛―――《对数函数图像及性质》的教学,从这节课的数学教学观、教学设计以及教学过程三个方面进行深刻的反思,提出了一些粗浅的观点和见解,希望各位老师不吝赐教。

一、反思数学教学观

我的数学教学基本观点是:创设丰富的情境,激发学生的学习兴趣;以学生为中心,加强数学活动过程的教学,留有探索与思考的余地;营造一种合作交流的课堂气氛,引导学生主体参与,还学生学习主动权,自我挖掘其创造潜能。

1.在本课的教学中,通过创设恐龙在地球上的出现时间、存在时间、灭亡时间的情境,引出可以估算出出土文物或古遗址的年代的公式,引导学生研究对数函数,一方面体现了“数学源于现实,寓于现实,用于现实”,另一方面使学生产生强烈的探索欲望。

2.本节课基本上做到让学生经历数学化的过程,在数学活动中学习数学。据评课教师记录,引导学生自主研究对数函数的图象和性质花了二十分钟,基本上做到了“让学生用自己的方式重新构造知识”。

3.本节学生主体参与度还可提高,由于要按时完成课时任务,学生发现的几种比较大小的方法没有充分展示与肯定,使所有参与者都有成就感。

4.根据这节课的教学实践并结合学生学习的特点,我的数学教学观还要增加一条:以人为本,充分肯定和鼓励学生,让学生体会到创造的乐趣,领悟数学的本质。

二、反思教学设计

1.对教学目标的反思:将“会利用对数函数的性质比较两个数的大小”改为“会利用对数函数的性质比较两个对数的大小”更具体,“培养学生观察、分析推理、归纳概括能力”可改为“逐步提高观察、分析推理、归纳概括的能力”用词更准确。

2.对学生已有内容的反思:由于“影响学习最重要的因素是学生已有的内容,弄清这一点后,进行相应的教学”,上课后再来反思学生已有内容,有如下几点:指数式与对数式转换比较娴熟,指数函数的'性质还记忆犹新。能动地使用计算器,这一点课前未充分估计到。教学设计考虑到了学生知识的个体差异与认知差异。

3.对教学内容组织及教学设计环节的反思:本课在教学设计上对教学内容进行了重组,整体上把握教材,将教材中的两个例题进行了优化重组和取舍,做到了内容上的整体性。

三、反思教学过程

1.对合作关系的反思:在这节课的课堂教学中,师生关系是平等的,学生有很多发言的机会。也暴露了不少思维过程的问题和语言表达方面的问题,充分展示了知识的发生过程。从学生的作图到性质的探究与变式练习,基本上都是学生自主完成的,学生主动参与。如比较两个对数的大小,学生一共想出了用计算器,转化为指数式比较,利用函数的图象,利用对数函数单调性等四种办法。教师因势利导,充分利用了图象法引导学生回到利用对数函数的单调性比较两对数式的大小。特别是指数和真数在同一区间,由学生自主发现该对数与0的大小关系,这一个片断评课教师认为比较精彩,在此要感谢晋中市教研室老师的真诚建议。另外,我觉得至少有一点值得肯定:知识、方法的归纳是教师带领学生归纳,还是让学生在实践后提炼,也值得教师精心设计。在上课过程中,由于我考虑到是公开课,担心无法完成教学任务,转化为考虑两个指数式的大小比较,我没有让学生充分展示,下来自认为这是本节课的一大失误,以后的教学中要尽可能多地拓展学生的发展空间。这节课给我的启示是:要给学生机会,不要低估他们的创新潜能。总之,教学不仅仅是告诉学生一个结果,而应该让他们看看老师的思考过程等等。

2.对课堂提问的反思:这一节课的课堂提问相对较多,基本上是在学生学习的过程上,让她们自己展示探究的内容和习题的解法,充分发挥学生的能动性。但是思维活跃的同学回答问题积极,其余的同学则反应平淡。

3.对时间结构的反思:基本上按课时完成教学任务,教学目标基本上实现。在以后的教学设计中,我要更充分地考虑学生可能出现的思维过程,让出充足的时间与空间给学生自主学习与自主探索。在平等的师生关系上和民主的课堂教学氛围之中给所有学生有暴露自己思想的时间和空间。

4.对课后练习题的反思:课后作业情况比较满意,教材中习题的提问中,同学们基本上都回答正确。看到这一点,我感到很欣慰。

以后课堂教学应注意改进的方面有:提出问题以后,留给学生充分的独立思考时间多些,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问;学生口述的时间过多,书写时间少,以后进一步加强学生书写能力的训练;还有根据学生的状况,对例习题进行修缮,对于学力一般的学生,删去部分习题。采用分层练习,满足了不同层次学生的学习需要。

毋庸置疑,继续推进新课改将是我国基础教育改革坚定不移的方向,但改革从来不是一蹴而就的。因此,数学教学中不但要鼓励教师不断反思自己的教学行为,让数学课远离虚伪的美丽,真正体现新课改理念,还要鼓励学生自觉改变学习方式,不断反思自己的学习,提高学习效率。

《对数函数及其性质》教学反思精选篇5

各位评委、老师们:大家好!我说课的内容是《对数函数及其性质》,《对数函数及其性质》是高中数学必修1第二章第二节的第2课时的教学内容。下面我从教材分析、教学目标设计、教学重难点、教法学法、教学媒体设计、教学过程设计六个方面对本节课进行说明:

一、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

二、教学目标设计:

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

1、知识目标:理解指数函数的定义,掌握对数函数的图性质及其简单应用。

2、能力目标:通过教学培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。

3、情感目标:通过学习,使学生学会认识事物的特殊与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。

三、教学重点、难点分析

1、理解函数的概念、掌握函数值的求法、函数定义域的求法是本节课的重点

2、学生的基础较好,大多数学生的动手能力较好,因此可以通过描点,让学生动手画图像,观察图像的特征,进一步理解性质,因此我将本课的难点确定为:用数形结合的方法从具体到一般地探索、概括对数函数的性质。

四、说教法、学法

在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

说学法“授人与鱼,不如授人与渔”。教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,进行以下学法指导:

比较法:在初步理解函数概念的同时,要求学生比较两种概念,特别加深理解数学知识之间的相互渗透性。

观察分析:让学生要学会观察问题,分析问题和解决新问题

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。这样可发挥学生的主观能动性,有利于提高学生的各种能力。

五、教学媒体设计:

根据本节课的教学任务,和学生学习的需要,教学媒体设计如下:

教师利用多媒体准备的素材①对数函数的图像②例题和习题③与本节课相关的结论

设计意图:利用电脑,演示作图过程及图像的变化的动态过程,例题和习题,从而使学生直接的接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。

六、教学过程的设计:

环节一:引入课题,初步感知概念

1.知识回顾

1)学习指数函数时,对其性质研究了哪些内容,采取怎样的方法?

设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法――借助图象研究性质.

2)对数的定义

设计意图:为讲解对数函数时对底数的限制做准备.

2.教学情景

由学生前面学习的熟悉的细胞有丝分裂问题入手,引入对数函数的概念设计意图:学生通过实际问题,体会函数

环节二:新知探究,构建概念

(一)对数函数的概念

1.定义:函数,且叫做对数函数(logarithmic function)其中是自变量,函数的定义域是(0,+∞).

学生思考问题:①为什么对数函数概念中规定②对数函数对底数的限制:

设计意图:为学习对数函数的定义,图像和性质做铺垫(

(二)对数函数的图象和性质

教师和学生通过列表,描点画出函数1)(2)(3)(4)的图像,并引导学生类比指数函数的图像和性质观察,归纳对数函数图像的特征,得出性质。

探索研究:在同一坐标系中画出下列对数函数的图象;(可用描点法,也可计算器)(1)(2)(3)(4)

环节三、典例分析,深化知识、

例1:

解:(略)

设计意图:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理巩固练习:

环节四、归纳小结,强化思想

本节课主要讲解了对数函数的定义,图像和性质及其求定义域,了解通过图像观性质。

环节五、作业布置(加深对知识的理解)

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正

    423311