《多项式乘以多项式》教学反思

|育祥

教学是一个不断学习和进步的过程,教学反思会帮助老师们更好地提高自己的教育能力。现在随着小编一起往下看看《多项式乘以多项式》教学反思,希望你喜欢。

《多项式乘以多项式》教学反思

《多项式乘以多项式》教学反思(精选篇1)

教学目标

会进行单项式与多项式相乘的运算。

理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想。

在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。

使学生获得成就感,培养学习数学的兴趣。

重点难点

重点

单项式与多项式相乘的运算法则及其运用

难点

灵活地运用单项式与多项式相乘的运算解决数学问题。

教学过程

一、复习导入

1. 计算单项式乘单项式时,要把系数和同底数幂分别相乘,这样做的依据是什么?体现了怎样的数学思想?

2. 你能用字母表示乘法的分配律吗?

3. 类似的,对于单项式乘以多项式,比如

你能将它转化成已经学过的单项式乘单项式来计算吗?

二、新课讲解

探究新知

1.怎样计算 ?

学生在已有的知识经验基础上,想到运用乘法分配律将问题进行转化:

教师指出,可以把单项式看成一个数,把多项式看成3个数的和。

2. 下面的运算该如何转化成单项式乘单项式呢?请你试一试:

(1) ;(2)

利用变式,进一步强化学生对算理的理解。学生互相交流后,教师板书,强调转化的过程中要把一个项(包括项前的符号)整个的看成一个数,这样能避免符号错误。

3. 你能根据上面的运算,用文字叙述一下单项式乘多项式的方法吗?

引导学生用自己的话叙述上面的运算过程,然后师生共同总结:

单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。

通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。

三、典例剖析

例1. 计算:

(1) ; (2)

学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:

单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。

例2 求 的值,其中

提问学生,可以直接把 带进式子运算吗?如果觉得运算很繁琐,你有其它的建议吗?

引导学生观察思考后,让学生尝试解答,之后教师板书示范,共同总结出方法:

计算代数式的值的一般步骤是先化简,再求值。

四、课堂练习

基础练习:

1.计算:

(1) ; (2) ;

(3) ; (4)

2.先化简,再求值:

,其中

学生练习,教师巡视,注意发现学生的错误,组织学生对错误进行分析,切实夯实基本运算能力。

提高练习

3.已知 ,求代数式 的值。

4.已知 ,求 的值。

让学生自己分析,相互讨论,丰富解决数学问题的经验。

五、小结

师生共同回顾单项式乘以多项式的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

P41 第7题

《多项式乘以多项式》教学反思(精选篇2)

学习目标

1、经历探索多项式乘法法则的过程,理解多项式乘法法则。

2、学会用多项式乘法法则进行计算。

3、要有用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。

学习重难点

重点是掌握多项式的乘法法则并加以运用。

难点是理解多项式乘法法则的推导过程和运用法则进行计算。

教学过程设计

看一看

认真阅读教材,记住以下知识:

1、多项式乘法的法则:

2、归纳易错点:

做一做:

1.计算:

(1)(a+2b)(a-b)=_________;

(2)(3a-2)(2a+5)=________;

(3)(x-3)(3x-4)=_________;

(4)(3x-y)(x+2y)=________.

2.计算:(4x2-2xy+y2)(2x+y).

3.计算(a-b)(a-b)其结果为()

A.a2-b2B.a2+b2

C.a2-2ab+b2D.a2-2ab-b2

4.(x+a)(x-3)的积的一次项系数为零,则a的值是()

A.1B.2C.3D.4

5.下面计算中,正确的是()

A.(m-1)(m-2)=m2-3m-2

B.(1-2a)(2+a)=2a2-3a+2

C.(x+y)(x-y)=x2-y2

D.(x+y)(x+y)=x2+y2

6.如果(x+3)(x+a)=x2-2x-15,则a等于()

A.2B.-8C.-12D.-5

想一想

你还有哪些地方不是很懂?请写出来。

_______________________________

_______________________________

________________________________.

预习展示:

一、计算(1)(x+y)(a+2b)

(2)(3x-1)(x+3)

二、先化简,再求值:

(2a-3)(3a+1)-6a(a-4)其中a=2/17

应用探究

计算

(1)(a+b)(a-b)

(2)(a+b)2

(3)(a+b)(a2-ab+b2)

(4)(a+b+c)(c+d+e)

拓展提高

1.当y为何值时,(-2y+1)与(2-y)互为负倒数.

2.已知(x+2)(x2+ax+b)的积不含x的二次项和一次项,求a、b的值.

3.已知:A=x2+x+1,B=x+p-1,化简:AB-pA,当x=-1时,求其值.

堂堂清

1.解方程:(2x+3)(x-4)-(x+2)(x-3)=x2+6.

2.先化简,再求值:5x(x2+2x+1)-x(x-4)(5x-3),其中x=1.

教后反思

在前面学习了单项式与单项式相乘,单项式与多项式相乘的法则之后,有继续来学习多项式与多项式的乘法法则,对学生来说掌握起来并不困难,但是学生的计算能力不是很强,所以计算起来很浪费时间,并且计算容易出错。

《多项式乘以多项式》教学反思(精选篇3)

【教学目标】

1、经历探索多项式乘法法则的过程,理解多项式乘法法则。

2、学会用多项式乘法法则进行计算。

3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。

【教学重点、难点】

重点是掌握多项式的乘法法则并加以运用。

难点是理解多项式乘法法则的推导过程和运用法则进行计算。

【教学过程】

一、回顾与思考

教师引导学生复习:单项式×多项式运算法则;整式的乘法实际上就是

单项式×单项式; 单项式×多项式; 和今天学多项式×多项式

二、创设情景,导入课题

展示:节前语和图片。

展示:课本中三图

图5-5

图5-6

图5-7

一间厨房的平面布局如图5-5,试用几种方法表示厨房的总面积。(师生共同探索,鼓励学生用不同的表示方法完成,然后总结)

由图5-6得总面积为(a+n)(b+m);由图5-7得总面积为a(b+m)+n(b+m)

或ab+am+nb+nm ; 此时提出问题《多项多的乘法》。

三、探索法则与应用

(a+n)(b+m)=a(b+m)+n(b+m)=ab+am+nb+nm

根据分配律,我们也能得到下面等式:

(a+n)(b+m)=ab+am+nb+nm

1、在学生发言的基础上,教师总结多项式×多项式的乘法法则并板书法则。

让学生体会法则的理论依据:

乘法对加法的分配律

多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

2、例题讲题

例1 计算(1)(x+y)(a+2b)

(2)(3x-1)(x+3)强调法则的作用。

例2 先化简,再求值:

(2a-3)(3a+1)-6a(a-4)其中a=2/17

解:(2a-3)(3a+1)-6a(a-4)

=6a2+2a-9a-3-6a2+24a

=17a-3

当a=2/17时,原式=17×2/17-3=-1

3、课内练习

见课本P114

四、拓展延伸,探索挑战

1、拓展演练

(1)(a+b)(a-b) (2)(a+b)2 (3)(a+b)(a2-ab+b2)

(4)(a+b+c)(c+d+e)

2、探索

课本P115 第6题

五、归纳小结,充实结构

指导学生总结本节课的知识点、学习过程等的自我评价。主要针对以下两个方面:

1、多项式×多项式 ;

2、整式的乘法

六、知识留恋、课后韵味

布置作业:作业本,一课一练。

《多项式乘以多项式》教学反思(精选篇4)

〖教学目标〗

1、经历探索多项式的'乘法运算法则的过程,掌握多项式与多项式相乘的法则。

2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。

3、会用多项式的乘法解决简单的实际问题。

〖教学重点与难点〗

教学重点:多项式与多项式相乘的运算。

教学难点:例2包含了多种运算,过程比较复杂是本节的难点。

〖教学过程〗

一、创设情境,引出课题

小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?

二、引出新知,探究示例

1、合作探索学习:有一家厨房的平面布局如图1

(1)请用三种不同的方法表示厨房的总面积。

(2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?

(3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?

(让学生以同桌合作的形式进行探索,然后表达交流)

答:(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm

(2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①

=ab+am+nb+nm……②

第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。

(3)由(a+n)(b+m)=ab+am+nb+nm师生共同总结得出多项式与多项式相乘的法则:

(学生归纳,教师板书)

2、运用新知,计算例题

例1:计算

(1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2

解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by

(2)(3x—1)(x+3)=3x2+9x—x—3=3x2+8x—3

(3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1

教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。

反馈练习:课内练习1

例2,先化简,再求值:(2a—3)(3a+1)—ba(a—4),其中a=

解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3

当a=时,原式=17a—3=17×()—3=—19—3=—22

注意的几点:(1)必须先化简,再求值,注意符号及解题格式。

(2)当代入的是一个负数时,添上括号。

(3)在运算过程中,把带分数化为假分数来计算。

反馈练习:1、计算当y=—2时,(3y+2)(y—4)—(y—2)(y—3)的值。

2、课内练习2、3。

三、分层训练,能力升级

1、填空

(1)(2x—1)(x—1)=

(2)x(x2—1)—(x+1)(x2+1)=

(3)若(x—a)(x+2)=x2—6x—16,则a=

(4)方程y(y—1)—(y—2)(y+3)=2的解为

2、某地区有一块原长m米,宽a米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为平方米。

3、某人以一年期的定期储蓄把2000元钱存入银行,当年的年利率为x,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?

四、小结

让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。

五、布置作业

课本的分层作业题。

《多项式乘以多项式》教学反思(精选篇5)

【目标导航】

1.理解多项式及多项式的项、次数的概念。

2.会准确迅速地确定一个多项式的项和次数以及常数项。

【要点梳理】

1.几个单项式的和叫做,其中每个单项式叫做多项式的,不含字母的项叫做。

2.一个多项式含有几项,就叫几项式。多项式里的次数叫做这个。

3.单项式与多项式统称为。

【问题探究】

例1、对于多项式

(1)最高次数项的系数是;

(2)是次项式;

(3)常数项是。

变式:下列各项式中,是二次三项式的是()

A、B、C、D、

例2、多项式的各项分别是()

A、B、C、D、

变式:写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为。

例3、多项式是关于的三次三项式,并且一次项系数为-7,求的值。

变式:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件。

【课堂操练】

1、把下列各式填在相应的`大括号里

单项式集合

多项式集合

整式集合

2、三个连续的奇数中,最小的一个是,那么最大的一个是。

3、在代数式,-1,,,,,中,整式有( )

A.3个 B.4个 C.5个 D.6个

4、若A和B都是4次多项式,则A+B一定是()

A、8次多项式B、4次多项式

C、次数不高于4次的整式D、次数不低于4次的整式

5、2x+3是_____式,它的项分别是_________,它的常数项是,它是次项式。

6、下列各项式中,是二次三项式的是()

A、B、C、D、

7、求图中红色阴影部分面积.

8、当时,求多项式的值。

9、若,求的值。

10、当时,求多项式的值。

【每课一测】

一、填空题(每题5分,共25分)

1、当时,代数式-=,=。

2、多项式是一个次项式。

3、多项式是_______次_______项式,

多项式2--4是次项式.

4、若多项式的值为10,则多项式的值为。

5、如果+=0,那么=___。

二、选择题(每题5分,共15分)

6、多项式的各项分别是()

A、B、C、D、

7、如果一个多项式是五次多项式,那么它任何一项的次数()

A.都小于5 B.都等于5C.都不小于5D.都不大于5

8、下列说法中正确的是()

A.5不是单项式 B.是单项式 C.的系数是0D.是整式

三、解答题(每题15分,共60分)

9、指出下列多项式的项和次数:

(1)3x-1+3x2;(2)4x3+2x-2y2。

10、指出下列多项式是几次几项式。

(1)x3-x+1;(2)x3-2x2y2+3y2。

11、扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示.如果长方体盒子的长比宽多

4,求这种药品包装盒的体积.

12、(2010北京)右图为手的示意图,在各个手指间标记字母A、B、C、D。请你按图中箭头所指方向(即ABCDCBABC…的方式)从A开始数连续的正整数1,2,3,4…,当数到12时,对应的字母是;

当字母C第201次出现时,恰好数到的数是;当字母C第2n1次出现时(n为正整数),恰好数到的数是(用含n的代数式表示)。

    422014