2023六年级数学教案

|新华

2023六年级数学教案篇1

教学目标:

1.通过画图的方法,探索长方形长和宽的变化关系,进一步理解反比例的意义。

2.经历探索活动,了解反比例曲线图的特征。

教学重点:

探究长方形面积不变时,长与宽的关系。

教学难点:

发现表示反比例曲线图的特征。

教学过程:

一、旧知铺垫。

1、正比例关系的意义是什么?怎么用字母表示这种关系?正比例的图像呢?

2、你还记得表示积一定,两个乘数之间的关系图吗?把积是12的方格圈起来,可以连成什么线?

3、说一说。

(1)两个乘数的变化情况。

(2)两个乘数成什么关系?

(3)你有什么猜想?

二、探索新知。

用X、Y表示面积为24平方厘米的长方形相邻的两条边长,他们的变化关系如下表。

x/cm1234681224

y/cm2412864321

1、说一说长与宽的变化情况。(小组交流)

2、这里哪个量一定?

3、面积一定时,长方形的长与宽有什么关系?(小组讨论)

板书:长宽=长方形面积(一定)

4、根据上面的数据,在方格纸上画出8个长方形。(每格代表1cm)

过程要求

(1)出示方格纸,并标明X、Y轴上的数字。

(2)教师边讲解,边画长方形。

(3)学生接着画。(直接在课本上完成)

5、连接图中的点A,B,C,D

(1)猜一猜:图中的点A,B,C,D在一条直线上吗?

(2)师生一起连线,验证自己的猜想。

三、课堂小结

说一说表示正比例关系的图像和反比例关系的关系式和图像的区别。

四、巩固练习

面包的总个数不变,每袋装的个数与袋数如下表。

每袋个数234681224

袋数12864321

(1)每袋个数与袋数有什么关系?说明理由。

(2)把上面的数据制成图表。

2023六年级数学教案篇2

教学内容:

课本第57——58页“扇形统计图“。

教学目标:

1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。

2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。

3、提高学生的实际应用能力。

教学重点:

认识扇形统计图,了解扇形统计图的特点与作用。

教学难点:

学生的实际应用能力的提高。

教具准备:

课件

教学过程:

一、复习旧知,引入新知

1、电脑课件呈现下表

种 类 摄入量/克 占总摄入量的百分比

油脂类 50

奶类和豆类 450

鱼、禽、肉、蛋等类 600

蔬菜和水果类 900

谷类 1800

2、电脑课件呈现统计图(或以学生的作品亦可)。

3、引入新知。

二、探索交流,获取新知

1、什么样的统计图是扇形统计图呢?

2、了解扇形统计图特点

3、即时练习。

完成课后的“说一说”。

(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。

(2)说一说,你有什么体会。

学生说信息,并计算各种成分的百分比

汇报计算结果,订正

学生发言、交流

学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。

观察,说出获得的信息

根据教师引导说出发现

从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。

观察数据,发现,说出不同,说出自己的看法

进行计算,订正

三、小结本课学习内容

谈话:这张表是小丽一家三口一天各类食物的摄入量,请你运用条形统计图表示表中的数据。说一说,条形统计图有什么特点?

提问:从条形统计图中,可以清楚地看到每一类食物的摄入量,能看出每一类食物的摄人量占总摄入量的百分之几吗?

揭题,板书课题:扇形统计图。

出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)

四、巩固升华

完成课后“试一试”。

1、比较各项活动时间,说一说有什么不同。提出数学问题

2、总时间是多少?各项活动时间可以怎么计算?

3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。

五、全课小结:你今天有什么收获?还有什么不懂的地方?

板书设计:

扇形统计图

能清楚地反映整体与部分的关系。

2023六年级数学教案篇3

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

教学重、难点:负数的意义。

教学过程:

一、谈话交流:谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

二、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

①六年级上学期转来6人,本学期转走6人。

②张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③与标准体重比,小明重了2.5千克,小华轻了1.8千克。

④一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试。怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。……

(3)展示交流。……

2.认识正、负数。

(1)引入正、负数。谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试。请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识。

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。①同桌交流。

②全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:……)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”。

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说。我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么?你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)你能很快找到12℃、-3℃吗?

(3)提升认识。

请学生观察温度计,说一说有什么发现?在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳。

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:(完善板书。)

5.练一练。读一读,填一填。(练习一第1题。)

6.出示课题。

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

7.负数的历史。(1)介绍。

其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):

“中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

(2)交流。

简单了解了负数的历史,你有什么感受?

三、练习应用:

今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

课件逐一出示:

1.表示海拔高度。(“做一做”第2题。)

通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。

2.表示温度。(练习一第2题。)

月球表面白天的平均温度是零上126℃,记作_________℃,夜间的平均温度为零下150℃,记作_____________℃。

3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

4.表示时间。(练习一第3题。)

“净含量:10±0.1kg”表示什么意思?

四、总结延伸

1.学生交流收获。

2.总结。简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

课后作业:1.完成数练第1页。

2023六年级数学教案篇4

教学过程

1、出示主题图。教材第2页主题图。

2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-2℃和2℃各代表什么意思?)

引出课题并板书:负数的初步认识

1、教学例1。

(1)教师板书关键数据:0℃。

(2)教师讲解0℃的意思:0℃表示淡水开始结冰的温度。

比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-2℃表示零下2摄氏度,读作:负三摄氏度。

比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+2℃表示零上2摄氏度,读作:正三摄氏度,也可以写成2℃,读作:三摄氏度。

(2)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。

(4)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?

2、学生讨论合作,交流反馈。

(1)请同学们把图上其它各地的温度都写出来,并读一读。

(2)教师展示学生不同的表示方法。

(2)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

2、教学例2。

(1)教师出示存折明细示意图。(教材第2页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。

(2)引导学生归纳总结:

像20__,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-122这样的数表示的是支出的钱数。

(2)教师:上述数据中500和-500意义相同吗?

(500和-500意义相反,一个是存入,一个是支出)。

你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?

师把学生的表示结果一一板书在黑板上。

4、归纳正数和负数。

(1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。

(2)教师展示分类的结果,适时讲解。

像+8,+4,+20__,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。

像-8,-4,-500,-20这样的数,我们把它叫做负数。

(2)那么0应该归为哪一类呢?

组织学生讨论,相互发表意见。

(4)归纳:0既不是正数也不是负数,它是正数和负数的分界点。

(5)你在什么地方见过负数?

鼓励学生注意联系实际举出更多的例子。

2023六年级数学教案篇5

教学目标:

1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。

2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

3、利用正比例关系,解决生活中的一些简单问题。

教学重点:

会在方格纸上描出成正比例的量所对应的点,并认识到成正比例关系的两个量的图象特点。

教学难点:

利用正比例关系,解决生活中的一些简单问题。

教学准备:

多媒体课件

教学过程:

一、复习

师:通过上节课的学习,同学们能根据正比例的特征来判断两个变量是否成正比例。首先,请同学们回忆一下,正比例要满足哪两个条件?

生:要满足两个条件

1、两种量是相关联的量,一种量随着另一种量的增加而增加、减少而减少;

2、两种量相对应的比值不变。

师:请同学们在思考一下:y=5x,y和x成正比例吗?为什么?

生:成正比例,因为y和x是两种相关联的量,随着x的变化,y也在不断变化,y和x的比值始终等于5.所以y和x成正比例。

师:看来对于成正比例的量之间的关系,同学们已经掌握,下面我们再思考一个问题:y和x成正比例,y是x的5倍,它们之间的关系能通过图画的到吗?这就是我们这节课要学习的内容。(教师板书课题:画一画)

(设计意图:复习上节课正比例的有关知识,导入本课。)

二、动手画图,理解含义。

填表,说一说表中两个量的关系。

一个数 0 1 2 3 4 5 6 7 8 9 10

这个数的5倍

(1)学生填表。

(2)学生汇报。

(3)谁能说一说这两个量的关系。

这两个量在不断变化,并且一个数增大,它地5倍也不断增大,但他们的比值不变。所以这两个变量成正比例关系。

(设计意图:通过本环节,带领学生看懂图,明确图上横轴、纵轴分别表示什么,明确各点所表示的含义。为下一步在表格上描点,扫清障碍。)

三、试一试

1、在下图中描点,表示第20页两个表格中的数量关系。

2、思考:连接各点,你发现了什么?

生:所有的点在都在同一条直线上。

(设计意图:学生会很形象的看到所有点都在同一条直线上,进一步体会当两个变量成正比例关系时,所绘成的图是一条直线。)

四、练一练

1、圆的半径和面积成正比例关系吗?为什么?

师:因为圆的面积和半径的比值不是一个常数。

师:请同学们观察课本上的图,看一看不成正比例的两个量所形成的的图形是不是一条直线?

(设计意图:从反方进一步证明成不成正比例的两个量,形成的图像不是一条直线。通过对比方式,再次验证结论。)

2、乘船的人数与所付船费为:(数据见书上)

(1)将书上的图补充完整。

(2)说说哪个量没有变?

(3)乘船人数与船费有什么关系?

(4)连接各点,你发现了什么?

3、回答下列问题

(1)圆的周长与直径成正比例吗?为什么?

(2)根据右图,先估计圆的周长,再实际计算。

(3)直径为5厘米的圆的周长估计值为( ),实际计算值为( )。

(4)直径为15厘米的圆的周长估计值为( ),实际计算值为( )。

4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)

(设计意图:通过以上练习,巩固所学。)

2023六年级数学教案篇6

教学目标:

1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。

2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。

3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。

重点、难点:

1.教学重点:理解、掌握杠杆平衡的规律。

2.教学难点:让学生综合应用所学的知识和方法解决实际问题。

教学准备:

竹竿,棋子,塑料袋(多媒体课件)

教学过程

一、准备材料,导入活动:

1.检查课前布置的制作工具(简单杠杆)的作业。

学生对照制作要求,自查和同组互相检查。

小黑板或媒体出示制作要求:

(1)准备的竹竿长1m,尽量做到粗细均匀。

(2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。

(3)从中点处每隔8cm做一个刻度记号,尽量等距离。

拿出准备好的棋子和塑料袋。检查大小是否一样。

2.揭示课题:有趣的平衡(板书)

二、动手实践,探索规律

1.活动一:探索特殊条件下竹竿保持平衡的规律:

(1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?

①学生思考,回答问题。“两边所放的棋子要同样多。”

②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。

(2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?

①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”

②演示。如:

左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。

(3)小结:

你有什么体会?

要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

2.活动二:探索在一般条件下竹竿保持平衡的规律(A)

(1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?

①也放4个棋子行不行?会产生什么结果?

②应该放几个?

“放3个。”

(2)如果左边的塑料袋在刻度6上放1个棋子。

①右边的塑料袋在刻度3上放几个呢?

学生交流,各自说出自己的见解。

②右边的塑料袋在刻度2上呢?

学生不难得出结果,放3个。

③右边的塑料袋在刻度1上呢?

学生不难得出结果,放6个。

(3)小结:

师:你有什么体会?

左右两边棋子个数与刻度数的积要相等。

3.活动三:探索在一般条件下竹竿保持平衡的规律(B):

(1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?

(2)实验活动:

①学生动手进行实验活动。

②将实验结果记录下来。

③教师提供表格,引导学生展开活动。

右刻度

所放棋子数

乘积

(3)汇报结果。

学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

(4)从表中你发现刻度数和所放棋子数成什么比例?

学生观察表中两个量的变化情况,不难发现这两种量成反比例

三、应用规律,体会揣摩

1.基本练习:

母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?

提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是_分米。可以得到方程

60_=12×15

解方程得_=3

答:她坐的地方距支点3分米才能保持平衡。

2.综合练习:

桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?

提示:(1)根据臂长和质量成反比例

(2)先确定每个托盘中所放砝码的总质量,在确定臂长。

四、回顾整理,反思提升

1.谈收获。

师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?

2.评价。

师:你对自己这节课的表现满意吗?

可采取学生自评,互评,老师评价的方式进行。

板书设计:

有趣的平衡

要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

作业设计

基础:

1.用边长20厘米的方砖铺一块地,需要20__块,如果改用边长为40厘米的方砖铺地,需要多少块?

综合:

2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?

提示:

(1)可以像例题中一样,用列表的方法做。

(2)根据臂长与质量成反比,列方程求解。

2023六年级数学教案篇7

教学内容:教材第22页相关内容及练习题

教学目标:知识与技能:能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。

过程与方法:在学习过程中培养学生的观察分析和交流合作的能力。

情感态度价值观:

1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

教学重难点:重点:能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。

难点:能根据观测点的变化灵活描述路线。

教学方法:合作交流、共同探讨

教、学具准备:教师:多媒体实物投影仪、量角器、三角尺、中国地图等。

学生:量角器、三角尺、中国地图等。

教学过程:

一.复习导入

1.复习。

同学们,在上节课的学习过程中,我们知道了要确定一个物体的位置,需要哪几个条件?

分别让学生说一说。

(确定物体相对于观测点的方向;确定物体相对于观测点的距离。)

2.导入。

今天这节课我们继续学习位置与方向的相关知识。

[板书课题:位置与方向(二)]

【设计意图】简单的知识回顾,帮助学生回忆学习过的有关知识,为学习新课做准备,让学生能快速地进入学习状态。

二、探过新知

㈠教学例题3。

1.出示台风的大致路径图。

(1)让学生在路径图上分别找一找:台风生成地、A市、B市、路径图上的方向标。

(2)指名汇报。

2.提出问题。

你能用自己的语言说说台风的移动路线吗?

如果学生有困难,可以进行如下适当启发:

台风生成以后,先是沿正西方向移动  km,然后改变方向,向西偏北  方向移动了   km,到达A市。接着,台风又改变了方向,向   偏  30度方向移动了  km,到达B市。

3.组织交流。

指名汇报,其他学生进行补充。

通过交流活动让学生明白台风到达一个新的位置后,要以新的位置作为观测点来判断台风运行的方向。

4.小结描述路线的方法。

描述路线时要讲清楚“从哪里出发”“沿什么方向”“移动多少距离”“到达哪里”。

(二)出示教材第22页“做一做”。

1.提出要求。

根据下面的描述画出路线示意图。

2.小组讨论画图方法。

⑴学生小组讨论怎么样画图。

教师巡视,参与个别小组讨论。

⑵组织交流汇报。

通过交流,让学生明白画图的步骤:

①定下出发时的位置。

②标出示意图的方向标。

③用量角器量出方向。

④确定比例尺,计算出图上距离,量出图上距离。

3.学生独立画路径图。

教师巡视,辅导有困难的学生。

4.展示汇报,交流评议。

交流时分别让学生说一说自己是如何画的。

教师要适时指导学生,特别是如何确定比例尺,也就是图上每一格代表实际的距离是多少。

【设计意图】教学过程中让学生通过观察分析、独立思考、合作交流等方式,亲历问题分析、解决过程,更好地理解物体之间的相对位置关系。

三、巩固练习

1.教材第23页“练习五”第3题。

这道题主要是通过动手操作测量,体会观测点的不同,引起方向的不同,从而懂得物体位置的方向是相对的。教学时可以通过以下步骤进行:

(1)在中国地图上找出北京和哈尔滨的位置;

(2)分别以北京和哈尔滨为观测点,画出“十”字方向标;

(3)连一连,量一量;

(4)说一说北京在哈尔滨的什么方向上,哈尔滨在北京的什么方向上;

(5)你发现了什么?(物体位置方向是相对的)

2.教材第26页“练习五”第9题。

(1)先根据描述,把公共汽车行驶的路线图画完整。通过这个小题,让学生巩固画路线图的方法。

(2)再根据路线图,说一说公共汽车沿原路返回时行驶的方向和路。通过这个小题,感受物体位置方向的相对性。

四、课堂小结

师生通过交流总结:知道了如何描述路线图,并根据路线图画出示意图,知道了物体的位置方向是相对的。

板书设计;

位置与方向㈡

描述路线:从哪里出发→沿什么方向→移动多少距离→到达哪里

定下出发的位置。

标出示意图的方向标。

画路线图的方法:  用量角器量出方向。

确定比例尺,计算出图上距离,量出图上距离。

教学反思:

    685574