人教版七年级数学上册教案

|康华

教案是教师对教学目标、教学内容、教学方法和评价方式进行系统规划的产物。下面是小编为大家整理的人教版七年级数学上册教案,如果大家喜欢可以分享给身边的朋友。

人教版七年级数学上册教案

人教版七年级数学上册教案 (篇1)

【教学目标】

1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

3、养成学生积极主动的学习态度和自主学习的方式。

【重点难点】

重点:认识点、线、面、体的几何特征,感受它们之间的关系。

难点:在实际背景中体会点的含义。

【教学准备】

圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型

【教学过程】

一、创设情境

多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的`喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.

设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.

二、讨论(动态研究)

课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?

观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.

让学生举出更多的“点动成线、线动成面、面动成体”的例子。

小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)

设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

三、讨论(静态研究)

教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。

让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。

四、探索

1、课本112页观察,并回答它的问题。

引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?

让学生自己体会并小组讨论得出点、线、面、体之间的关系。

五、作业

1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.

2、阅读教科书第119页的实验与探究,并思考有关问题。

人教版七年级数学上册教案 (篇2)

教学目标

1.会利用合并同类项的方法解一元一次方程;(重点)

2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用.(难点)

教学过程

一、情境导入

1.等式的基本性质有哪些?

2.解方程:(1)x-9=8; (2)3x+1=4.

3.下列各题中的两个项是不是同类项?

(1)3xy与-3xy;  (2)0.2ab与0.2ab;

(3)2abc与9bc; (4)3mn与-nm;

(5)4xyz与4xyz; (6)6与x.

4.能把上题中的同类项合并成一项吗?如何合并?

5.合并同类项的法则是什么?依据是什么?

二、合作探究

探究点一:利用合并同类项解简单的`一元一次方程

例1解下列方程:

(1)9x-5x=8;

(2)4x-6x-x=15.

解析:先将方程左边的同类项合并,再把未知数的系数化为1.

解:(1)合并同类项,得4x=8.

系数化为1,得x=2.

(2)合并同类项,得-3x=15.

系数化为1,得x=-5.

方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式.

探究点二:根据“总量=各部分量的和”列方程解决问题

例2足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?

解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程.

解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个).

答:黑色皮块有12个,白色皮块有20个.

方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来.

三、板书设计

1.用合并同类项的方法解简单的一元一次方程.

解方程的步骤:

(1)合并同类项;

(2)系数化为1(等式的基本性质2).

2.找等量关系列一元一次方程.

列方程解应用题的步骤:

(1)设未知数;

(2)分析题意找出等量关系;

(3)根据等量关系列方程;

(4)解方程并作答.

教学反思

本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫.教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯.

人教版七年级数学上册教案 (篇3)

垂线

[教学目标]

1。理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2。掌握点到直线的距离的概念,并会度量点到直线的距离。

3。掌握垂线的性质,并会利用所学知识进行简单的推理。

[教学重点与难点]

1。教学重点:垂线的定义及性质。

2。教学难点:垂线的画法。

[教学过程设计]

一。复习提问:

1、叙述邻补角及对顶角的定义。

2、对顶角有怎样的性质。

二。新课:

引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

(一)垂线的定义

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线AB、CD互相垂直,记作,垂足为O。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:

1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图)

反之,

(二)垂线的画法

探究:

1、用三角尺或量角器画已知直线l的.垂线,这样的垂线能画出几条?

2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?

3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?

画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

性质1过一点有且只有一条直线与已知直线垂直。

练习:教材第7页

探究:

如图,连接直线l外一点P与直线l上各点O,

A,B,C,……,其中(我们称PO为点P到直线

l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?

性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(四)点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,PO的长度叫做点P到直线l的距离。

例1

(1)AB与AC互相垂直;

(2)AD与AC互相垂直;

(3)点C到AB的垂线段是线段AB;

(4)点A到BC的距离是线段AD;

(5)线段AB的长度是点B到AC的距离;

(6)线段AB是点B到AC的距离。

其中正确的有()

A。 1个B。 2个

C。 3个D。 4个

解:A

例2如图,直线AB,CD相交于点O,

解:略

例3如图,一辆汽车在直线形公路AB上由A

向B行驶,M,N分别是位于公路两侧的村庄,

设汽车行驶到点P位置时,距离村庄M最近,

行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

练习:

1。

2。教材第9页3、4

教材第10页9、10、11、12

小结:

1。要掌握好垂线、垂线段、点到直线的距离这几个概念;

2。要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;

3。垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

人教版七年级数学上册教案 (篇4)

【学习目标】:

1、会用尺规画一条线段等于已知线段;

2、会比较两条线段的长短;

3、理解线段中点的 概念,了解“两点之间,线段最短”的性质。

【学习重点】:线段 的中点概念,“两点之间,线段最短”的性质是重点;

【学习难点】:画一条线段等于已知线段是难点。

【导学指导】

一、温故知新

1、过A、B、C三点作直线,小 明说有三条,小颖说有一条,小林说不是一条就是三条,你认为______的说法是对的。

二 、自主学习

问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长 ?

上面的实际问题可以转化为下面的数学问题:

2、比较两条线段的长短

两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?

我们先来回答下面的问题。

怎样比较两个同学的身高?

一是用尺子测量;二是站在一起比(脚在同一高度)。

如果把两个同学看成两条线段,那么比较两条线段就有两种方法。

(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。

(2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。

练习题

一、填空

1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.

2. 三条直线两两相交,则交点有_______________个.

二、下列说法中正确的是( )

A、两点之间线段最短

B、若两个角的顶点重合,那么这两个角是对顶角

C、一条射线把一个角分成两个角,那么这条射线是角的平分线

D、过直线外一点有两条直线平行于已知直线

9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的.直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有( )

A、0个B、1个C、2个D、3个

同步四维训练

知识一:直线的性质

3.在开会前,工作人员进行会场布置,在主席台上由两人拉着一条绳子,然后以“准绳”为基准摆放茶杯,这样做的理由是(B )

A.两点之间线段最短

B.两点确定一条直线

C.垂线段最短

D.过一点可以作无数条直线

知识点二:线段的作法及比较

4.在跳绳比赛中,要在两条绳子中挑出较长的一条用于比赛,选择的方法是(A )

A.把两条绳子的一端对齐,然后拉直两条绳子,另一端在外面的即为长绳

B.把两条绳子接在一起

C.把两条绳子重合观察另一端的情况

D.没有办法挑选

人教版七年级数学上册教案 (篇5)

【知识与技能】

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.

2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.

【过程与方法】

通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.

【情感态度】

通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.

【教学重点】

理解算术平方根的概念.

【教学难点】

根据算术平方根的概念正确求出非负数的算术平方根.

一、情境导入,初步认识

教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.

问题1求出下列各数的.平方.

1,0,(-1),-1/3,3,1/2.

问题2下列各数分别是某实数的平方,请求出某实数.

25,0,4,4/25,1/144,-1/4,1.69.

对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.

由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.

22=4,(-2) =4,故平方为4的数为2或-2.

问题3学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?

分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.

《6.1.2平方根》课堂练习题

2.(绵阳中考)±2是4的(A)

A.平方根B.相反数

C.绝对值D.算术平方根

3.下面说法中不正确的是(D)

A.6是36的平方根B.-6是36的平方根

C.36的平方根是±6 D.36的平方根是6

4.下列说法正确的是(D)

A.任何非负数都有两个平方根

B.一个正数的平方根仍然是正数

C.只有正数才有平方根

D.负数没有平方根

《6.1平方根》课时练习含答案

15.下面说法正确的是( )

A.4是2的平方根

B.2是4的算术平方根

C.0的算术平方根不存在

D.-1的平方的算术平方根是-1

答案:B

知识点:平方根;算术平方根

解析:

解答:A、4不是2的平方根,故本选项错误;

B、2是4的算术平方根,故本选项正确;

C、0的算术平方根是0,故本选项错误;

D、-1的平方为1,1的算术平方根为1,故本选项错误.

故选B.

分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

人教版七年级数学上册教案 (篇6)

教学目标

1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.

重点、难点

重点:探索并理解平移的性质.

难点:对平移的认识和性质的探索.

教学过程

一、引入新课

1.教师打开幻灯机,投放课本图5.4-1的图案.

2.学生观察这些图案、思考并回答问题.

(1)它们有什么共同的特点?

(2)能否根据其中的一部分绘制出整个图案?

3.师生交流.

(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的.“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.

《5.4平移》同步讲义练习和同步练习

1在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为   .

2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为   cm2.

3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20__次“移位”后,则他所处顶点的编号是   .

《5.4平移》同步测试卷含答案

1. 将图形平移,下列结论错误的是( )

A.对应线段相等

B.对应角相等

C.对应点所连的线段互相平分

D.对应点所连的线段相等

解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.

12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )

A.轴对称 B.平移 C.旋转 D.平移和旋转

解析: 国旗上的四个小五角星通过平移和旋转可以相互得到.故选D.

    683275