高二数学的教案
高二数学的教案篇1
一、教学过程
1.复习。
反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。
求出函数y=x3的反函数。
2.新课。
先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):
教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。
生2:这是y=x3的反函数y=的图象。
师:对,但是怎么会得到这个图象,请大家讨论。
师:我们请生1再给大家演示一下,大家帮他找找原因。
生3:问题出在他选择的次序不对。
师:哪个次序?
生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。
师:是这样吗?我们请生1再做一次。
(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)
师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?
师:我们请生4来告诉大家。
生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。
师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?
(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)
师:怎么由y=x3的图象得到y=的图象?
生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。
师:将横坐标与纵坐标互换?怎么换?
师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?
生6:我发现这两个图象应是关于某条直线对称。
师:能说说是关于哪条直线对称吗?
生6:我还没找出来。
学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。
生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。
师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。
(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)
教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(x∈R)没有反函数,也不是函数的图象。
最后教师与学生一起总结:
点(x,y)与点(y,x)关于直线y=x对称;
函数及其反函数的图象关于直线y=x对称。
二、反思与点评
1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。
2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。
计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。
在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。
当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。
3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。
高二数学的教案篇2
一、内容和内容解析
1.内容
本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题.
2.内容解析
本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法.在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的.统计有两种.一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查.但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常的大或者有的产品的质量检查是破坏性的.统计和概率的基础知识已经成为一个未来公民的必备常识.
抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体.其中蕴涵了重要的统计思想——样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.
本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.
二、目标和目标解析
1.目标
(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,
(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;
(3)以问题链的形式深刻理解样本的代表性.
2.目标解析
本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题.让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识.
对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性.抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解.为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本.由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.
三、教学问题诊断分析
学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想——样本估计总体以及统计结果的不确定性.学生已有知识经验与本节要达成的教学目标之间还有很大的差距.主要的困难有:对样本估计总体的思想、对统计结果的“不确定性”产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.
在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力.在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳.
根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体.
四、教学支持条件分析
准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.
五、教学过程设计
(一)感悟数据、引入课题
问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?
师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?
设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.
问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?
普查:为了一定的目的而对考察对象进行的全面调查称为普查.
总体:所要考察对象的全体称为总体(population)
个体:组成总体的每一个考察对象称为个体(individual)
普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等.
设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的.
(二)操作实践、展开课题
问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?
抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(samplinginvestigation).
样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).
师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.
设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.
列举:一个的案例
高二数学的教案篇3
一、学习目标
1)理解对数的概念;
2)能熟练地进行对数式与指数式的转化.
二、教学重点和教学难点
重点:对数的概念
难点:对对数概念的理解
三、知识链接
1.指数函数:(),,0
2.运算性质:
四.学习过程:
阅读课本,解答下面问题:
1、对数的定义:一般地,如果()的b次幂等于N,即,那么
数叫做以为底的对数,记作:.
其中叫做对数的,叫做.
2、把下列指数式写成对数式
①、②、③、
3、把下列对数式写成指数式
①、;②;③;
阅读课本,解答下面问题:
4、特殊对数
通常以为底的对数叫常用对数,并把简记作
在科学技术中常使用以无理数为底的对数,以为底的对数称为自然对数,并把简记作.
如:;.
5、根据对数式与指数式的关系,填写下表中空白处的名称.
式子名称
指数式
对数式
6、思考交流
高二数学的教案篇4
教学准备
教学目标
1、知识与技能
(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.
2、过程与方法
通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.
3、情态与价值
通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.
教学重难点
重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.
难点:终边相同的角的表示.
教学工具
投影仪等.
教学过程
【创设情境】
思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25
小时,你应当如何将它校准?当时间校准以后,分针转了多少度?
[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.
【探究新知】
1.初中时,我们已学习了角的概念,它是如何定义的呢?
[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a.旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点.
2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?
[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).
8.学习小结
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直
线上的角的集合.
五、评价设计
1.作业:习题1.1A组第1,2,3题.
2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,
进一步理解具有相同终边的角的特点.
课后小结
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直
线上的角的集合.
课后习题
作业:
1、习题1.1A组第1,2,3题.
2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,
进一步理解具有相同终边的角的特点.
板书
略
高二数学的教案篇5
一、指导思想:
在学校教学工作意见指导下,在年级部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。
二、教材简析
使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。
三、教学任务
本学期上半期授课内容为《选修1—2》和《选修4—4》,中段考后进入第一轮复习。
四、学生基本情况及教学目标
认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。
高二文科学生共有10个班,其中尖尖班2个,8个平行重点班。尖尖班的学生重点是数学尖子生的培养,冲刺高考数学高分为目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。
五、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2、通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
六、教学措施:
1、认真落实,搞好集体备课。每两周进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容滚动式编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。并根据需要在年级开设数学困难生补充辅导班。
高二数学的教案篇6
【学习目标】
1、进一步体会数形结合的思想,提高分析问题解决问题的能力;
2、能借助正余弦函数的诱导公式推导出正切函数的诱导公式;
3、掌握诱导公式在求值和化简中的应用.
【学习重点】正切函数的诱导公式及应用
【学习难点】正切函数诱导公式的推导
【学习过程】
一、预习自学
1.观察课本38页图1-46,当-414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式时,角414【导学案】正切函数的诱导公式与角2414【导学案】正切函数的诱导公式的正切函数值有什么关系?
我们可以归纳出以下公式:
tan(2414【导学案】正切函数的诱导公式)=tan(-414【导学案】正切函数的诱导公式)=tan(2414【导学案】正切函数的诱导公式)=
tan(414【导学案】正切函数的诱导公式=tan(414【导学案】正切函数的诱导公式=
2.我们可以利用诱导公式,将任意角的三角函数问题转化为锐角三角函数的问题,参考下面的框图,想想每次变换应该运用哪些公式。
414【导学案】正切函数的诱导公式
给上述箭头上填上相应的文字
二、合作探究
探究1试运用414【导学案】正切函数的诱导公式,414【导学案】正切函数的诱导公式的正、余弦函数的诱导公式推证公式tan(414【导学案】正切函数的诱导公式和tan414【导学案】正切函数的诱导公式.
探究2若tan414【导学案】正切函数的诱导公式,借助三角函数定义求角414【导学案】正切函数的诱导公式的正弦函数值和余弦函数值.
探究3求414【导学案】正切函数的诱导公式的值.
三、达标检测
1下列各式成立的是()
Atan(414【导学案】正切函数的诱导公式=-tan414【导学案】正切函数的诱导公式Btan(414【导学案】正切函数的诱导公式=tan414【导学案】正切函数的诱导公式
Ctan(-414【导学案】正切函数的诱导公式)=-tan414【导学案】正切函数的诱导公式Dtan(2414【导学案】正切函数的诱导公式)=tan414【导学案】正切函数的诱导公式
2求下列三角函数数值
(1)tan(-414【导学案】正切函数的诱导公式(2)tan240414【导学案】正切函数的诱导公式414【导学案】正切函数的诱导公式(3)tan(-1574414【导学案】正切函数的诱导公式)
3化简求值
tan675414【导学案】正切函数的诱导公式+tan765414【导学案】正切函数的诱导公式+tan(-300414【导学案】正切函数的诱导公式)+tan(-690414【导学案】正切函数的诱导公式)+tan1080414【导学案】正切函数的诱导公式
四、课后延伸
求值:414【导学案】正切函数的诱导公式
高二数学的教案篇7
教学目标
1.了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度熟悉单调性和奇偶性.
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉.教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点.
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来.
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
函数的奇偶性教学设计方案
教学目标
1.使学生了解奇偶性的概念,回会利用定义判定简单函数的奇偶性.
2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和非凡到一般的思想方法.
3.在学生感受数学美的同时,激发学习的爱好,培养学生乐于求索的精神.
教学重点,难点
重点是奇偶性概念的形成与函数奇偶性的判定
难点是对概念的熟悉
教学用具
投影仪,计算机
教学方法
引导发现法
教学过程
一.引入新课
前面我们已经研究了函数的单调性
,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.
对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,非凡是函数中有没有对称问题呢?
(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等.)
结合图象提出这些对称是我们在初中研究的关于轴对称和关于原点对称问题,而我们还曾研究过关于轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于轴对称的吗?
学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称.最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.
二.讲解新课
2.函数的奇偶性(板书)
教师从刚才的图象中选出,用计算机打出,指出这是关于轴对称的图象,然后问学生初中是怎样判定图象关于轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?
学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)
从这个结论中就可以发现对定义域内任意一个,都有成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.
(1)偶函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做偶函数.(板书)
(给出定义后可让学生举几个例子,如等以检验一下对概念的初步熟悉)
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.
(2)奇函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做奇函数.(板书)
(由于在定义形成时已经有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)
例1.判定下列函数的奇偶性(板书)
(1);(2);
(3);;
(5);(6).
(要求学生口答,选出12个题说过程)
解:(1)是奇函数.(2)是偶函数.
(3),是偶函数.
前三个题做完,教师做一次小结,判定奇偶性,只需验证与之间的关系,但对你们的回答我不满足,因为题目要求是判定奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?
学生经过思考可以解决问题,指出只要举出一个反例说明与不等.如即可说明它不是偶函数.(从这个问题的解决中让学生再次熟悉到定义中任意性的重要)
从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性.
教师由此引导学生,通过刚才这个题目,你发现在判定中需要注重些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有1,有2,就必有2,有,就必有,有就必有,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?
可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.
(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)
由学生小结判定奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.
经学生思考,可找到函数.然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证实吗?
例2.已知函数既是奇函数也是偶函数,求证:.(板书)(试由学生来完成)
证实:既是奇函数也是偶函数,
=,且,
=.
,即.
证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现,只是解析式的特征,若改变函数的定义域,如,,,,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类
(4)函数按其是否具有奇偶性可分为四类:(板书)
例3.判定下列函数的奇偶性(板书)
(1);(2);(3).
由学生回答,不完整之处教师补充.
解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数.
(2)当时,既是奇函数也是偶函数,当时,是偶函数.
(3)当时,于是,
当时,,于是=,
综上是奇函数.
教师小结(1)(2)注重分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可.
三.小结
1.奇偶性的概念
2.判定中注重的问题
四.作业略
五.板书设计
2.函数的奇偶性例1.例3.
(1)偶函数定义
(2)奇函数定义
(3)定义域关于原点对称是函数例2.小结
具备奇偶性的必要条件
(4)函数按奇偶性分类分四类
探究活动
(1)定义域为的任意函数都可以表示成一个奇函数和一个偶函数的和,你能试证实之吗?
(2)判定函数在上的单调性,并加以证实.
在此基础上试利用这个函数的单调性解决下面的问题: