创意初中数学教案设计

|新华

创意初中数学教案设计篇1

教学目标 1, 通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

2, 利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3, 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

教学难点 深化对正负数概念的理解

知识重点 正确理解和表示向指定方向变化的量

教学过程(师生活动) 设计理念

知识回顾与深化 回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

问题1:有没有一种既不是正数又不是负数的数呢?

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分

界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是

零上7℃,最低温度是零下5℃时,就应该表示为+7℃

和-5℃,这里+7℃和-5℃就分别称为正数和负数 .

那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数•

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入

负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即

可,不必深究.

分析问题

解决问题 问题3:教科书第6页例题

说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?

等等。

可视教学中的实际情况进行补充.

这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种

意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在

不必向学生提出.

巩固练习 教科书第6页练习

阅读思考

教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

小结与作业

课堂小结 以问题的形式,要求学生思考交流:

1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2,怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

本课作业 1, 必做题:教科书第7页习题1.1第3,6,7,8题

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

定方向变化的量。

2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

创意初中数学教案设计篇2

教学目标

1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.

2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.

3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.

教学重难点

教学重点:

1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.

2、会运用公式进行简单的计算.

教学难点:

1、完全平方公式的推导及其几何解释.

2、完全平方公式的结构特点及其应用.

教学工具

课件

教学过程

一、复习旧知、引入新知

问题1:请说出平方差公式,说说它的结构特点.

问题2:平方差公式是如何推导出来的?

问题3:平方差公式可用来解决什么问题,举例说明.

问题4:想一想、做一做,说出下列各式的结果.

(1)(a+b)2(2)(a-b)2

(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)

二、创设问题情境、探究新知

一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)

(1)四块面积分别为:、、、;

(2)两种形式表示实验田的总面积:

①整体看:边长为的大正方形,S=;

②部分看:四块面积的和,S=.

总结:通过以上探索你发现了什么?

问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?

问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.

(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)

问题3:你能说说(a+b)2=a2+2ab+b2

这个等式的结构特点吗?用自己的语言叙述.

(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)

问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.

总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.

问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?

语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.

强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.

三、例题讲解,巩固新知

例1:利用完全平方公式计算

(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

解:(2x-3)2=(2x)2-2o(2x)o3+32

=4x2-12x+9

(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

=16x2+40xy+25y2

(mn-a)2=(mn)2-2o(mn)oa+a2

=m2n2-2mna+a2

交流总结:运用完全平方公式计算的一般步骤

(1)确定首、尾,分别平方;

(2)确定中间系数与符号,得到结果.

四、练习巩固

练习1:利用完全平方公式计算

练习2:利用完全平方公式计算

练习3:

(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)

五、变式练习

六、畅谈收获,归纳总结

1、本节课我们学习了乘法的完全平方公式.

2、我们在运用公式时,要注意以下几点:

(1)公式中的字母a、b可以是任意代数式;

(2)公式的结果有三项,不要漏项和写错符号;

(3)可能出现①②这样的错误.也不要与平方差公式混在一起.

七、作业设置

创意初中数学教案设计篇3

教学目标 1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2, 能区分两种不同意义的量,会用符号表示正数和负数;

3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点 正确区分两种不同意义的量。

知识重点 两种相反意义的量

教学过程(师生活动) 设计理念

设置情境

引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

活中仅有这些“以前学过的数”够用了吗?下面的例子

仅供参考.

师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严

密性,但对于学生来说,更多

地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

举一反三思维拓展 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

课堂练习 教科书第5页练习

小结与作业

课堂小结 围绕下面两点,以师生共同交流的方式进行:

1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。

作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要

本课教育评注(课堂设计理念,实际教学效果及改进设想)

密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.

负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子

或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实

存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例

子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.

这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,

体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见

的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

创意初中数学教案设计篇4

一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

二、教学重点:勾股定理的证明和应用。

三、 教学难点:勾股定理的证明。

四、教法和学法: 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境 以古引新

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。(二)初步感知 理解教材

教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难 讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习 强化提高

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结 练习反馈

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

创意初中数学教案设计篇5

一、素质教育目标

(一)知识教学点

1.理解有理数乘方的意义.

2.掌握有理数乘方的运算.

(二)能力训练点

1.培养学生观察、分析、比较、归纳、概括的能力.

2.渗透转化思想.

(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.

(四)美育渗透点

把记成,显示了乘方符号的简洁美.

二、学法引导

1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.

2.学生学法:探索的性质→练习巩固

三、重点、难点、疑点及解决办法

1.重点:运算.

2.难点:运算的符号法则.

3.疑点:①乘方和幂的区别.

②与的区别.

四、课时安排

1课时

五、教具学具准备

投影仪、自制胶片.

六、师生互动活动设计

教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.

七、教学步骤

(一)创设情境,导入 新课

师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?

生:可以记作,读作的四次方.

师:呢?

生:可以记作,读作的五次方.

师:(为正整数)呢?

生:可以记作,读作的次方.

师:很好!把个相乘,记作,既简单又明确.

【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.

师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.

生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.

非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).

【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.

(二)探索新知,讲授新课

1.求个相同因数的积的运算,叫做乘方.

乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.

注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.

巩固练习(出示投影1)

(1)在中,底数是__________,指数是___________,读作__________或读作___________;

(2)在中,-2是__________,4是__________,读作__________或读作__________;

(3)在中,底数是_________,指数是__________,读作__________;

(4)5,底数是___________,指数是_____________.

【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.

师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?

学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.

生:到目前为止,已经学习过五种运算,它们是:

运算:加、减、乘、除、乘方;

运算结果:和、差、积、商、幂;

教师对学生的回答给予评价并鼓励.

【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.

师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.

学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.

【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.

2.练习:(出示投影2)

计算:1.(1)2, (2), (3), (4).

2.(1),,,.

(2)-2,,.

3.(1)0, (2), (3), (4).

学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.

师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?

先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.

生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.

师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?

学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.

生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.

师:请同学思考一个问题,任何一个数的偶次幂是什么数?

生:任何一个数的偶次幂是非负数.

师:你能把上述结论用数学符号表示吗?

生:(1)当时,(为正整数);

(2)当

(3)当时,(为正整数);

(4)(为正整数);

(为正整数);

(为正整数,为有理数).

【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.

创意初中数学教案设计篇6

一、教材分析

1、教材的地位和作用

本课位于人民教育出版社义务教育课程标准实验教科书七年级下册第五章第二节第一课时。主要内容是让学生在充分感性认识的基础上体会平行线的三种判定方法,它是空间与图形领域的基础知识,是《相交线与平行线》的重点,学习它会为后面的学行线性质、三角形、四边形等知识打下坚实的“基石”。同时,本节学习将为加深“角与平行线”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,提高运用数学的能力。

2、教学重难点

重 点 三种位置关系的角的特征;会根据三种位置关系的角来判断两直线平行的方法。

难 点 “转化”的数学思想的培养。

由“说点儿理”到“用符号表示推理”的逐层加深。

二、教学目标

知识目标 了解同位角、内错角、同旁内角等角的特征,认识“直线平行”的三个充分条件及在实际生活中的应用。

能力目标 ①通过观察、思考探索等活动归纳出三种判定方法,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题。

情感目标 ①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。

通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。

②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。

三、教学方法

1、采用指导探究法进行教学,主要通过二个师生双边活动:①动——师生互动,共同探索。②导——知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习几何方法的缺乏,和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、利用课件辅助教学,突破教学重难点,扩大学生知识面,使每个学生稳步提高。

四、教学流程:

我的教学流程设计是:从创设情境,孕育新知开始,经历探索新知,构建模式;解释新知,落实新知;总结新知,布置作业等过程来完成教学。

创设情境,孕育新知:

①师生欣赏三幅图片,让学生观察、思考从几何图形上看有什么共同点。

②从学生经历过的事入手,让学生比较两张奖状粘贴的好坏,并说明理由,让学生留心实际生活,欣赏木工画平行线的方法。

③落实到学生是否会画平行线?本环节教师展示图片,学生观察思考,交流回答问题,了解实际生活中平行线的广泛应用。

设计意图:通过图片和动画展示,贴近学生生活,激发学生的学习兴趣。从学生经历过的事入手。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。

2、实验操作,探索新知1

①由学生是否会画平行线导入,用小学学过的方法过点P画直线AB的平行线CD,学生动手画并展示。

②学生思考三角尺起什么作用(教师点拨)?

③学生动手操作:用学具塑料条摆两条平行线被第三条直线所截的模型,并探讨图中角的关系(同位角)。

④教师把学生画平行线的过程和塑料条模型抽象成几何图形,指明同位角的位置关系是截线,被截线的同旁,

归纳:两直线平行条件1

教师展示一组练习,学生独立完成,巩固新知。

在这一环节中,教师应关注:

①学生能否画平行线,动手操作是否准确

②学生能否独立探究、参与、合作、交流

设计意图:复习提问,利用教具、学具让学生动手,提高学生学习兴趣,调动学生思考和积极性,提高学生合作交流的能力和质量,教师有的放矢,让学生掌握重点,培养学生自主探究的学习习惯和能力。及时练习巩固,,体现学以致用的观念,消除学生学无所用的思想顾虑。

3、大胆猜想,探究新知

⑴学生分组讨论:

①∠2和∠3是什么位置关系?

∠3和∠4是什么位置关系?

②直线CD绕O旋转是否还保持上述位置关系?

③∠2与∠3,∠2与∠4一定相等吗?猜想,展示讨论成果。

⑵学生探究:

问题:①∠2=∠3能得到AB∥CD吗?

②∠2+∠4=180可以判定AB∥CD吗?

学生用语言表述推理过程,教师深入学生中并点拨将未知的转化为已知,并规范推理过程。和学生一起归纳直线平行的条件2,3。

⑶学生独立完成练习。

本环节教师关注:

①学生能否主动参与数学活动,敢于发表个人观点。

②小组团结协作程度,创新意识。

③表扬优秀小组

设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。

4、解释运用,巩固新知

本环节共有五个练习,第一题落实同位角、内错角、同旁内角位置特征。第二、三题落实三种判定方法的应用。第四、五题是注重学生动手操作,解决实际问题的训练。

本环节教师应关注:

①深入学生当中,对学习有困难学生进行鼓励,帮助。

②学生的思维角度是否合理。

设计意图:加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。

5、总结新知,布置作业

通过设问回答补充的方式小结,学生自主回答三个问题,教师关注全体学生对本节课知识的程度,学生是否愿意表达自己的观点,采用必做题和选做题的方式布置作业。

设计意图:通过提问方式引导学生进行小结,养成学习——总结——再学习的良好习惯,发挥自我评价作用,同时可培养学生的语言表达能力。作业分层要求,做到面向全体学生,给基础好的学生充分的空间,满足他们的求知欲。

五、教学设计

创意初中数学教案设计篇7

一、教学目标:

1、理解二元一次方程及二元一次方程的解的概念;

2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

二、教学重点、难点:

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段:

通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

四、教学过程:

1、情景导入:

新闻链接:x70岁以上老人可领取生活补助。

得到方程:80a+150b=902880、

2、新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

做一做:

(1)根据题意列出方程:

①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:

(2)课本P80练习2、判定哪些式子是二元一次方程方程。

合作学习:

活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的&39;一对未知数的值叫做二元一次方程的一个解。

并提出注意二元一次方程解的书写方法。

3、合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

出示例题:已知二元一次方程x+2y=8。

(1)用关于y的代数式表示x;

(2)用关于x的代数式表示y;

(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。

(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

4、课堂练习:

(1)已知:5xm—2yn=4是二元一次方程,则m+n=;

(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;

5、你能解决吗?

小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。

6、课堂小结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

7、布置作业:

    682403