初中数学教案
推文网小编精心整理初中数学教案,希望这份初中数学教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多初中数学教案资料,在搜索框搜索
初中数学教案精选篇1
一、教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。
三、教学过程设计
1、创设情境,提出问题
2、实验操作,模型构建
3、回归生活,应用新知
4、知识拓展,巩固深化
5。感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20__年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2、5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。
(二)实验操作模型构建
1、等腰直角三角形(数格子)
2、一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。
通过以上实验归纳总结勾股定理。
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律。
(三)回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。
四、知识拓展巩固深化
基础题,情境题,探索题。
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。
基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基。通过学生自己创设情境,锻炼了发散思维。
情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。
五、感悟收获布置作业:
这节课你的收获是什么?
作业:
1、课本习题
2、搜集有关勾股定理证明的资料。
初中数学教案精选篇2
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:
引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:
大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思
师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
初中数学教案精选篇3
一、教材、学情分析
“扇形统计图”是义务教育课程标准实验教科书浙江教育出版社七年级上册第六章第四节的学习内容,是从生活中实际问题出发,结合新课程标准的理念,创造使用教材设计的一节课。生活中经常需要收集数据,而统计图是展示数据的重要方法,经常出现在报刊杂志媒体中,为此教科书安排了扇形统计图的认识和制作。
学生在小学里曾经学习过扇形统计图,对扇形统计图的意义、特点和制作有初步的了解。本节课数据的收集是从学生身边熟悉的简单问题入手,让学生体会数据在现实生活中的作用,理解扇形统计图的特点,并能从中获得有用的信息,进而养成数据说话的习惯,初一学生积极要求上进喜欢表现自己,课堂上应该给学生广阔的舞台,让学生充分思考、合作交流和探究,品尝学习带来的快乐。
二、教学目标
知识与技能目标:
1、通过实际问题认识扇形统计图的含义和特点;
2、能从扇形统计图中获取正确的信息,并能作出合理的解释和推断。
过程与方法目标:
1、在收集数据的过程当中,学会合作学习,并了解收集数据的方法步骤;
2、在从扇形统计图中获取信息的过程当中,学会相互交流、相互评价;
3、在决策和形成猜想中的过程当中,感受收集和利用数据是非常重要的。
情感与态度目标:
1、通过从身边的一些简单问题,体验数据在解决不少现实问题中是有用的;
2、在问题解决的过程当中,品尝发现带来的欢乐,树立学好数学的自信心。
三、教学重点和难点
重点:在合作讨论的过程当中体会数据在现实生活中的作用,理解扇形统计图的特点,学会制作扇形统计图。
难点:从扇形统计图中尽可能多并且正确地获取信息、利用数据进行分析、作出判断。
四、教学和活动过程
(一)教学准备阶段
1、利用PowerPoint制作一个简单课件(没有多媒体教室可采用小黑板展示);
2、布置学生准备,圆规、铅笔、彩色笔、计算器、剪刀等工具。
(二)教学流程
1、引入 前面我们学习了折线统计图和条形统计图,今天我们将学习另外一种统计图——扇形统计图,大家小学里已经学过,有印象吗?能回忆起来是怎样的一个图吗?学生回答(是一个圆分成几部分),下面先让大家欣赏一个扇形统计图。(展示)同学们暑假肯定看了奥运会,能知道中国得了多少枚金牌吗?(32)
射击 4 12。5%
球类 8 25%
水上项目 8 25%
力量型项目 9 28。125%
田径 2 6。25%
体操 1 3。125%
从这个统计图中同学们能知道中国在什么项目上有优势,什么项目上薄弱呢?大家知道吗?美国在什么项目上有优势?(田径)
引入设计说明:
1、从学生感兴趣的奥运会引入,激发学生的兴趣,调节课堂气氛。2、突出扇形统计图的优点——能直观反映各部分在总体中所占的比例,区别于折线型统计图和条形统计图。
今天这节课我们来更深入一步认识一下扇形统计图,并教大家如何来画扇形统计图。
2、出示课本学生快餐营养成份统计图,学生观察、思考,老师介绍扇形统计图的特点。
用圆和扇形分别表示关于总体和各个组成部分数据的统计图叫做扇形统计图(或称饼形图),特点是能直观地、生动地反映各部分在总体中所占的比例。
第一问、第二问学生回答;
第三问先说明什么是圆心角,顶点在圆心的角,课本上有摩天轮图(学生观察)。我们可以更直观向学生介绍,用事先准备好圆纸片对折,再对折,把圆分成相等四部分,这个直角就是圆心角。
这样学生更直观、清楚地理解了圆心角的概念。
还有奔驰汽车的标志,把圆分成相等的三部分,圆心角为120。
总结:圆心角的度数为所占的比例乘以360。
请一个学生回答第三问。
3、做一做,P152,第(2)小题后面部分,老师分析。
4、合作活动,师生互动(主要让学生学会画扇形统计图)
提出问题—→调查情况—→收集数据—→整理数据—→画图
问题:同学们从家里到学校交通情况。
学生举手,一个学生点数,另一个学生记录,得出有关数据。
①步行 20人 40% 144 不妨设有50名学生,统计数据若如下(根据现场统计情况有不同的数据)。
②骑自行车 15人 30% 108
③坐公交 10人 20% 72
④其他 5人 10% 36
画图步骤:1、画一个圆;
2、按各组成部分所占的比例算出各个扇形的圆心角度数;
3、根据算出的各圆心角的度数画出各个扇形,并注明相应的百分比,各比例的名称可以注在图上,也可用图例表明。
注意:不用彩色,也可用白色、涂黑、斜线、网状等表示,学会动手画出扇形统计图。
学生再看例题:气象资料统计图,计算圆心角度数需用计算器。
5、课内练习,学生板演,一个学生计算数据,一个学生画出扇形统计图。
6、作业 1)P153 ①②③④,思考题⑤
2)收集扇形统计图,渠道来自报纸、杂志、上网查询。
3)自己设计一个调查方案,用调查的数据制作一个扇形统计图。
五、教学设计说明
新课程标准下的教学设计应全面贯彻六大基本理念,更加侧重理念③和理念④,本节课突出生动有趣的特点,学习方式多样化,让学生成为课堂的主人。引入的情景设计是学生身边的问题,例题采用学生自己收集数据、整理数据,最后画图,让学生感到一种自己研究成果的成就感,相比之下,比课本的气象资料更具有感染力。作业中有一题是自己设计一个调查方案,培养学生动手能力、实践能力,这就是新课程大力倡导的。
初中数学教案精选篇4
教学目的 知识技能 使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题.
数学思考 提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想.
解决问题 通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题.
情感态度 通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美.
教学难点 审题,从文字语言中挖掘有价值的信息.
知识重点 会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题.
教学过程 设计意图
教学过程
问题一:列方程解应用题的一般步骤?
师生共同回忆
列方程解应用题的步骤:
(1)审题;(2)设未知数;
(3)列方程;(4)求解;
(5)检验; (6)答.
问题二:矩形的周长和面积?长方体的体积?
问题三:如图,某小区内有一块长、宽比为1:2的矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽.
教师活动:引导学生读题,找到题目中的关键语句.
学生活动:在关键语句中找到反映相等关系的语句,探究解决办法.
教师活动:用多媒体演示分析,解题方法.
做一做
如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子.求剪去的小正方形的边长.
课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形.已知原长方形的面积是正方形面积的 ,求这个正方形的边长.
问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元.经市场调查发现:如果每件服装降价1元,平均每天能多售出2件.在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的.如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?
学生活动:在众多的文字中,找到关键语句,分析相等关系.
教师活动:用多媒体帮助学生分析试题.提示学生检验解的合理性.
课堂练习:1.经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双.物价局限定每双鞋的售价不得超过进价的120%.如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?
2.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25 %的.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)
复习列方程解应用题的一般步骤.
本题为后面解决有关面积、体积方面问题做铺垫.
提高学生的审题能力.使学生会解决有关面积的问题.
解决体积问题的问题
培养学生用数学的意识以及渗透转化和方程的思想方法.
强调对方程的解进行双重检验.
小结与作业
课堂
小结 利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养.
本课
作业 课本第43页 习题2
课后随笔(课堂设计理念,实际教学效果及改进设想)
初中数学教案精选篇5
学习目标
1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
3、能分析出一个简单分式有、无意义的条件。
4、会根据已知条件求分式的值。
学习重点
分式的概念,掌握分式有意义的条件
学习难点
分式有、无意义的条件
教学流程
预习导航
一、创设情境:
京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:
(1)货运列车从北京到上海需要多长时间?
(2)快速列车从北京到上海需要多长时间?
(3)已知从北京到上海快速列车比货运列车少用多少时间?
观察刚才你们所列的式子,它们有什么特点?
这些式子与分数有什么相同和不同之处?
合作探究
一、概念探究:
1、列出下列式子:
(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是
(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是 元。
(3)正n边形的每个内角为 度。
(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花 ______㎏。
2、两个数相除可以把它们的商表示成分数的形式。如果用字母 分别表示分数的分子和分母,那么 可以表示成什么形式呢?
3、思考:
上面所列各式有什么共同特点?
(通过对以上几个实际问题的研讨,学会用 的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)
分式的概念:
4、小结分式的概念中应注意的问题.
① 分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;
② 分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
③ 如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的条件。
二、例题分析:
例1 : 试解释分式 所表示的实际意义
例2:求分式 的值 ①a=3 ②a=—
例3:当取什么值时,分式 (1)没有意义?(2)有意义?(3)值为零。
三、展示交流:
1、在 ____________中,是整式的有_____________________,是分式的有________________;
2、 写成分式为____________,且当m≠_____时分式有意义;
3、当x_______时,分式 无意义,当x______时,分式的值为1。
4、 若分式 的值为正数,则x的取值应是 ( )
A. , B. C. D. 为任意实数
四、提炼总结:
1、什么叫分式?
2、分式什么时候有意义?怎样求分式的值