乘法交换律数学教案
推文网小编精心整理乘法交换律数学教案,希望这份乘法交换律数学教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多乘法交换律数学教案资料,在搜索框搜索
乘法交换律数学教案(精选篇1)
教学内容:
九年义务教育苏教版小学数学第七册第81-83页例1、例2和练一练,练习十七第1-4题。
教学要求:
1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。
3.增强合作意识,激发学生学习数学的兴趣。
教学过程:
一、猜谜引入
1.猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。
生:(积极举手,低声喊)纽扣。
师:你为什么会想到是纽扣?
生:因为纽扣的位置扣错了,衣服穿出去就很难看,会让人笑话。
师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。
2.提问:用字母如何表示加法交换律、结合律呢?
适时板书:a+b=b+a a+b+c=a+(b+c)
3.设问:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)
[评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]
二、猜测验证
1.猜一猜:乘法可能有哪些运算定律?
生1:乘法可能有交换律。
生2:乘法可能有结合律。
生3:
2.提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)
3.学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)
[评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]
4.交流。
(1)生1:我们小组经过讨论认为乘法有交换律。比如:35二53,016=160等等。两个乘数的位置变了,但它们的积不变。
生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。
生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人?可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。
提问:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。
生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如3006=6300。
提问:你能用自己的语言描述一下乘法交换律吗?
生:两个数相乘,交换乘数的位置,积不变。
师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。
师:和你们说的有什么不同?
生1:我们说的是乘数,但书上说的是因数。
生2:书上曾讲过乘数又叫因数,所以我们说交换乘数的位置,积不变也是对的。
师:会用字母表示吗?板书:ab=ba)。
电脑出示练习十七第2题。
师:请你判别一下,有没有运用乘法交换律?并说明理由。
[评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的`积极性,而且使学生体会了发现新规律的方法。
(2)生4:我们发现乘法也有结合律。如:(32)4=3(24)。
生5:我们也同意这种观点。我们是用应用题来说明的。比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元?可以用645=120(元),还可以用6(45片=120(元),它们的结果一样。
生6:我们是用算式来说明的,如:(3467)23=34状6723)。
提问:同学们能用自己的语言描述一下乘法结合律吗?
生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
师:你说得很准确,有什么好方法帮助记忆?
生8:我把加法结合律里的加换成乘,把和换成积,其余的不变。
生9:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘它等于先把后两个手指靠在一起,再把第一个手指靠过来。
师:这个记忆方法确实很好,我们大家一起来试一试。师:怎样用字母表示乘法结合律?板书:(ab)c=a(bc)
[评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]
5.比较加法运算定律和乘法运算定律。
师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方?
生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。
生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。
[评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。]
三、运用
1.回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?
生:我们验算乘法时就应用了乘法的交换律。
2.基本练习。
3.发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。
869=( )
[评析:练习的层次鲜明,目标明确; 促进学生构建新的知识网络。]
四、小结。(略)
乘法交换律数学教案(精选篇2)
本课题教时数:25本教时为第16教时备课日期11月7日
教学目标
1.使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。
2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。
教学重难点
使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。
教学准备
投影片
教学过程设计
教学内容
师生活动
备注
一、揭示课题
二、学习新课
三、巩固练习
四、课堂小结
五、课堂作业
1.我们已经学过加法的运算定律,请大家回忆一下,是怎样的?
2.加法交换律用字母公式如何表示?加法结合律呢?(板书)
3.请大家大胆地猜测一下:乘法有
怎样的运算定律?(学生猜测)
4.大家猜的非常好,的确乘法也有
交换律和结合律?这节课我们一起来研究一下乘法的交换律和结合律。(板书课题)
1.学习例1
(1)出示例1
(2)小组合作,想一想:怎样求出邮票的总张数?
(3)组织交流:①43=12(张)②34=12(张)
(4)思考:这两种算法都是求什么的?结果怎样?从中你体会到了什么?(板书:43=34)
(5)这两个算式有什么相同和不同的地方?
2.其他的算式是不是也有着这样的特点呢?出示第81页上的有关题目。学生先计算再比较。
3.从这些算式中,你体会到了什么?谁能来归纳一下。你能用字母公式来表示吗?(根据学生所讲,板书ab=ba)。
4.学习乘法交换律的应用。
乘法交换律我们以前有没有碰到过?你能举个例子吗?
完成练一练的第1题。指名一人板演,其余学生做在练习本上。
5.学习乘法结合律。
(1)出示计算题。①(1412)5②14(125)
(2)学生按运算顺序计算,指名两人板演。
(3)比较两个算式的结果,你可以得出怎样的结论。
(4)板书:(1412)5=14(125)。比较这两个算式有什么相同的地方和不同的地方?
6.其他的算式是不是也有着这样的特点呢?出示第83页上的有关题目。学生先计算再进行比较。
7.从中你发现了什么?谁能来归纳一下?你能用字母公式来表示吗?[板书:(ab)c=a(bc)]
8.谁能根据字母公式,来说一说乘法有着怎样的运算定律?
1.在□里填上合适的数,并说说这样填的理由。
(1)9635=35□4827=□48
(1615)4=16(□□)
25(218)=(25□)□
(3)判断:哪些等式应用了乘法运算定律?应用了什么定律?
153=315
2124=4212
7(86)=7(68)
(32)1=3+(2+1)
(434)15=43(415)
今天这节课我们一起学习了什么内容?你有什么收获?
练习十七第1题、第4题
课后感受
学生由于已经有了加法运算定律的积累,所以今天的课上的很顺,学生大多能正确地进行迁移、应用。少数同学会在回答概念时,把乘法口误成加法。
乘法交换律数学教案(精选篇3)
教学内容
四年级(下册)第61~62页。
教学目标
1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。
2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。
3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。
教学过程
一、复习旧知、导入新课
1.出示:
你能在下列的 内填上合适的数吗?
28+320=320+ ;
(27+138)+62=27+( + );
35+ = +35。
提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?
2.出示:
在下列○内填上合适的运算符号。
4○10=10○4 (2○3)○5=2○(3○5)。
谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?
3.导入新课。
谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?
【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】
二、举例验证探索规律
(一)探索乘法交换律。
1.情景中感知乘法交换律。
出示例题。(略)
谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?
学生列式:3×5=15(人)或5×3=15(人)。
提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?
板书:3×5=5×3。
【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】
2.举例验证。
谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?
学生举例。
引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?
学生交流,教师选择一些等式板书。
电脑验证大数相乘的结果。
谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。
3.总结规律。
讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)
板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。
提示:你能像加法交换律一样用字母来表示乘法的交换律吗?
板书:a×b=b×a。
提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?
【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】
4.回忆乘法交换律在过去学习中的运用。
谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的'方法验算乘法等。)
【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】
(二)探索乘法结合律。
1.初步感知。
谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。
出示例题。(略)
谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?
组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。
2.引导比较。
提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)
提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)
板书:(5×3)×4=5×(3×4)。
3.举例验证。
谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。
组织交流,教师有选择地板书一些等式。
4.总结规律。
讨论:
(1)你发现等号两边的算式中什么不变,什么变了?
(2)你能从这些算式中发现什么规律?
师生共同归纳乘法结合律。
板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。
谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?
板书:(a×b)×c=a×(b×c)。
【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】
乘法交换律数学教案(精选篇4)
教学内容:教科书第63页。
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便运算,体验运算律的应用价值,培养学生的探究意识和解决问题能力,增强数学的应用意识。
3、培养学生观察,比较,分析,综合和归纳,概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点、难点:
理解并掌握乘法交换律和乘法结合律,并会用运算律进行简便计算。
教学准备:教学光盘
教学过程:
一、复习引新。
1.什么叫做乘法交换律?乘法结合律?你能用字母表示吗?
2.口算。
计算三角形三个角上的三个数的积。
(5、17、20)(35、2、29)(25、37、4)
提问:上面各题口算时怎样算比较方便?
指出:连乘时如果有两个数相乘得的积是整十整百,要先乘,再和第三个数相乘就比较简便。
1、你知道怎样的相乘得整百或整十数?
引导学生熟记常用数据:254=100258=2001258=1000
口诀中相乘的积个位上是0的。
2、简便计算
28154451329425125188
二、运算运算律,简便计算。
出示:35182516
(1)指名板演,列竖式计算,集体练习。
(2)讨论:怎样运算比较简便,可以不必列竖式计算,直接口算得到。
(3)讨论2516,想25和谁相乘可以得到整十或整百?25需要和相乘,怎样找到4,(将16分成4乘4)
2516
=2544运用乘法结合律可以得到。
=1004
=400
(4)3518怎样做比较简便呢?学生仿照上述的样子试做。
三、出示想想做做第8题,谁能将他们做的又对又快?学生集体练习,说说上下两题的联系。怎样计算比较简便。
四、巩固练习:
1、用简便方法计算。
2512351625321252516
指名扳演,集体订正。
2、想想做做P63、7。
先独立填表,再观察和比较,说说积是怎样变化的。
乘法交换律数学教案(精选篇5)
【教学内容】
西师版四年级下册数学教材第17~18页例1~2,练习四第1题。
【教学目标】
1.经历在计算中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
【教学重难点】
在具体情景中探索发现乘法交换律、乘法结合律。
【教学过程】
一、复习旧知
1.以前学过的加法运算律有哪些?
加法交换律和加法结合律(学生回答)
2.说一说,下面的等式用了什么运算律?
80+a=a+80()20+30+40=20+(30+40)()
3.通过预习,你知道下面的等式用了什么运算律吗?
2×3=3×2()(2×3)×4=2×(3×4)()
引出课题:乘法运算律。
二、新课讲授
1、讲解
2×3=3×2
观察并思考:
(1)等号左边的算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:两个因数交换位置,积不变。
师引导学生得出乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)
随堂练习:计算下面各题,用交换因数位置的方法进行验算。
34×16 26×37
学生独立做,请两名学生上台板演。
2讲解
(2×3)×4=2×(3×4)
观察并思考:
(1)等号左边的算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:每个算式只是改变了运算顺序,每排左、右两个算式计算结果相等,
三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
三、课堂活动
1.练习四第1题:学生独立完成,全班交流,说出依据。
2.连线。
(学生独立完成)
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)
四、课堂小结
今天这节课你都有哪些收获?还有什么问题?
五、作业
练习四第1、2题。