对数函数数学教案

|少兵

推文网小编精心整理对数函数数学教案,希望这份对数函数数学教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多对数函数数学教案资料,在搜索框搜索

对数函数数学教案篇1

对数函数及其性质教学设计

1.教学方法

建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.

在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。其理论依据为建构主义学习理论。它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。

2.学法指导

新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。

3.教学手段

本节课我选择计算机辅助教学。增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务.

4.教学流程

四、教学过程

教学过程

设计意图

一、创设情境,导入新课

活动1:(1)同学们有没有看过《冰河世纪》这个电影?先播放视频,引入课题。

(2)考古学家经过长期实践,发现冻土层内某微量元素的含量P与年份t的关系:,这是一个指数式,由指数与对数的关系,此指数式可改写为对数式。

(3)考古学家提取了冻土层内微量元素,确定它的残余量约占原始含量的1%,即P=0.01,代入对数式,可知

(4)由表格中的数据:

碳14的含量P

0.5

0.3

0.1

0.01

0.001

生物死亡年数t

5730

9953

19035

39069

57104

可读出精确年份为39069,当P值为0.001时,t大约为57104年,所以每一个P值都与一个t值相对应,是一一对应关系,所以p与t之间是函数关系。

(5)数学知识不但可以解决猛犸象的封存时间,也可以与其他学科的`知识相结合来解决视频中的遗留问题,就是不知道咱们中国的猛犸象克隆问题会由班里的哪位同学解决,我们拭目以待。

(6)把函数模型一般化,可给出对数函数的概念。

通过这个实例激发学生学习的兴趣,使学生认识到数学来源于实践,并为实践服务。

和学生一起分析处理问题,体会函数关系,并体现学生的主体地位。

二、形成概念、获得新知

定义:一般地,我们把函数

叫做对数函数。其中x是自变量,定义域为

例1求下列函数的定义域:

(1);(2).

解:(1)函数的定义域是。

(2)函数的定义域是。

归纳:形如的的函数的定义域要考虑—

三、探究归纳、总结性质

活动1:小组合作,每个组内分别利用描点法画和的图象,组长合理分工,看哪个小组完成的最好。

选取完成最好、最快的小组,由组长在班内展示。

活动2:小组讨论,对任意的a值,对数函数图象怎么画?

教师带领学生一起举手,共同画图。

活动3:对a>1时,观察图象,你能发现图象有哪些图形特征吗?

然后由学生讨论完成下表左边:

函数的图象特征

函数的性质

图象都位于y轴的右方

定义域是

图象向上向下无限延展

值域是R

图象都经过点(1,0)

当x=1时,总有y=0

当a>1时,图象逐渐上升;

当0当a>1时,是增函数

当0通过对定义的进一步理解,培养学生思维的严密性和批判性。

通过作出具体函数图象,让学生体会由特殊到一般的研究方法。

学生可类比指数函数的研究过程,独立研究对数函数性质,从而培养学生探究归纳、分析问题、解决问题的能力。

师生一起完成表格右边,对0<a<1时,找两位同学一问一答共同完成,再次体现数形结合。

四、探究延伸

(1)探讨对数函数中的符号规律.

(2)探究底数分别为与的对数函数图像的关系.

(3)在第一象限中,探究底数分别为的对数函数图象与底数a的关系.

五、分析例题、巩固新知

例2比较下列各组数中两个值的大小:

(1),;

(2),;

(3),。

解:

(1)在上是增函数,

且3.4<8.5,

(2)在上是减函数,

且3.4<8.5,.

(3)注:底数非常数,要分类讨论的范围.

当a>1时,在上是增函数,

且3.4<8.5,;

当0且3.4<8.5,

练习1:比较下列两个数的大小:

练习2:比较下列两个数的大小:

(找学生上黑板讲解练习2的第一题,强调多种做法,一起完成第二小题.)

考察学生对对数函数图像的理解与掌握,进一步强调数形结合。

通过运用对数函数的单调性“比较两数的大小”培养学生运用函数的观点解决问题,逐步向学生渗透函数的思想,分类讨论的思想,提高学生的发散思维能力。

六、对比总结、深化认识

先总结本节课所学内容,由学生总结,教师补充,强调哪些是重要内容

(1)对数函数的定义;

(2)对数函数的图象与性质;

(3)对数函数的三个结论;

(4)对数函数的图象与性质的应用.

七、课后作业、巩固提高

(1)理解对数函数的图象与性质;

(2)课本74页,习题2.2中7,8;

(3)上网搜集一些运用对数函数解决的实际问题,根据今天学习的知识予以解答.

八、评价分析

坚持过程性评价和阶段性评价相结合的原则。坚持激励与批评相结合的原则.

教学过程中,评价学生的情绪、状态、积极性、自信心、合作交流的意识与独立思考的能力;

在学习互动中,评价学生思维发展的水平;

在解决问题练习和作业中,评价学生基础知识基本技能的掌握.

适时地组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用,发挥知识系统的整体优势,并为后续学习打好基础。

课后作业的设计意图:

一、巩固学生本节课所学的知识并落实教学目标;二、让不同基础的学生学到不同的技能,体现因材施教的原则;

三、使同学们体会到科学的探索永无止境,为数学的学习营造一种良好的科学氛围。

对数函数数学教案篇2

教学目标:

(一)教学知识点:

1.对数函数的概念;

2.对数函数的图象和性质.

(二)能力训练要求:

1.理解对数函数的概念;

2.掌握对数函数的图象和性质.

(三)德育渗透目标:

1.用联系的观点分析问题;

2.认识事物之间的互相转化.

教学重点:

对数函数的图象和性质

教学难点:

对数函数与指数函数的关系

教学方法:

联想、类比、发现、探索

教学辅助:

多媒体

教学过程:

一、引入对数函数的概念

由学生的预习,可以直接回答“对数函数的概念”

由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:

问题:

1.指数函数是否存在反函数?

2.求指数函数的反函数.

①;

②;

③指出反函数的定义域.

3.结论

所以函数与指数函数互为反函数.

这节课我们所要研究的便是指数函数的反函数——对数函数.

二、讲授新课

1.对数函数的定义:

定义域:(0,+∞);值域:(-∞,+∞)

2.对数函数的图象和性质:

因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

研究指数函数时,我们分别研究了底数和两种情形.

那么我们可以画出与图象关于直线对称的曲线得到的图象.

还可以画出与图象关于直线对称的曲线得到的图象.

请同学们作出与的草图,并观察它们具有一些什么特征?

对数函数的图象与性质:

图象

性质

(1)定义域:

(2)值域:

(3)过定点,即当时,

(4)上的增函数

(4)上的减函数

3.图象的加深理解:

下面我们来研究这样几个函数:

我们发现:

与图象关于X轴对称;与图象关于X轴对称.

一般地,与图象关于X轴对称.

再通过图象的变化(变化的值),我们发现:

(1)时,函数为增函数,

(2)时,函数为减函数,

4.练习:

(1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?

(2)比较下列各组数中两个值的大小:

(3)解关于x的不等式:

思考:(1)比较大小:

(2)解关于x的不等式:

三、小结

这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

四、课后作业

课本P85,习题2.8,1、3

对数函数数学教案篇3

教学目标:

①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:

对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的.大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logл0.5 ,lnл

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0<a<1时,函数y=logax单< p="">

调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递

增,所以loga5.1<loga5.9。< p="">

板书:

解:ⅰ)当0<a<1时,函数y=logax在(0,+∞)上是减函数,< p="">

∵5.1<5.9 loga5.1="">loga5.9

ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5.1<5.9 ∴loga5.1<loga5.9< p="">

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1,

log0.50.6<1,所以logл0.5< log0.50.6< lnл。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

例 2 ⑴求函数y=的定义域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要

使函数有意义。若函数中含有分母,分母不为零;有偶次根式,

被开方式大于或等于零;若函数中有对数的形式,则真数大于

零,如果函数中同时出现以上几种情况,就要全部考虑进去,求

它们共同作用的结果。)

生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。

板书:

解:∵ 2x-1≠0 x≠0.5

log0.8x-1≥0 , x≤0.8

x>0 x>0

∴x(0,0.5)∪(0.5,0.8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解: x2+2x-3>0 x<-3 x="">1

(3x+3)>0 , x>-1

x2+2x-3<(3x+3) -2<x<3< p="">

不等式的解为:1<x<3< p="">

例 3 求下列函数的值域和单调区间。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y= log0.5u, u= x- x2复合而成。

对数函数数学教案篇4

一、内容与解析

(一)内容:对数函数的性质

(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。

二、目标及解析

(一)教学目标:

1.掌握对数函数的性质并能简单应用

(二)解析:

(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。

三、问题诊断分析

在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.

四、教学支持条件分析

在本节课()的教学中,准备使用(),因为使用(),有利于().

五、教学过程

问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。

设计意图:

师生活动(小问题):

1.这些对数函数的解析式有什么共同特征?

2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。

3.通过这些函数图象请从函数值的分布角度总结相关性质

4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?

问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。

问题3.根据问题1、2填写下表

图象特征函数性质

a>10<a<1a>10<a<1

向y轴正负方向无限延伸函数的值域为R+

图象关于原点和y轴不对称非奇非偶函数

函数图象都在y轴右侧函数的定义域为R

函数图象都过定点(1,0)

自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数

在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1

在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1

[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成

例1.比较下列各组数中两个值的大小:

(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7

(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

变式训练:1. 比较下列各题中两个值的大小:

⑴ log106 log108 ⑵ log0.56 log0.54

⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

2.已知下列不等式,比较正数m,n 的大小:

(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n

(3) log a m < loga n (0 log a n (a>1)

例2.(1)若 且 ,求 的取值范围

(2)已知 ,求 的取值范围;

六、目标检测

1.比较 __和__ 的大小:

2.求下列各式中的x的值

(1)

演绎推理导学案

2.1.2 演绎推理

学习目标

1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;

2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.

学习过程

一、前准备

复习1:归纳推理是由 到 的推理.

类比推理是由 到 的推理.

复习2:合情推理的结论 .

二、新导学

※ 学习探究

探究任务一:演绎推理的概念

问题:观察下列例子有什么特点?

(1)所有的金属都能够导电,铜是金属,所以 ;

(2)一切奇数都不能被2整除,2007是奇数,所以 ;

(3)三角函数都是周期函数, 是三角函数,所以 ;

(4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么 .

新知:演绎推理是

的推理.简言之,演绎推理是由 到 的推理.

探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?

所有的金属都导电 铜是金属 铜能导电

已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断

大前提 小前提 结论

新知:“三段论”是演绎推理的一般模式:

大前提—— ;

小前提—— ;

结论—— .

新知:用集合知识说明“三段论”:

大前提:

小前提:

结 论:

试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式.

※ 典型例题

例1 命题:等腰三角形的两底角相等

已知:

求证:

证明:

把上面推理写成三段论形式:

变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF 平面BCD

例2求证:当a>1时,有

动手试试:1证明函数 的值恒为正数。

2 下面的推理形式正确吗?推理的结论正确吗?为什么?

所有边长相等的凸多边形是正多边形,(大前提)

菱形是所有边长都相等的凸多边形, (小前提)

菱形是正多边形. (结 论)

小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.

三、总结提升

※ 学习小结

1. 合情推理 ;结论不一定正确.

2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.

3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为

A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”

结论显然是错误的,是因为

A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为

A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

4.归纳推理是由 到 的推理;

类比推理是由 到 的推理;

演绎推理是由 到 的推理.

后作业

1. 运用完全归纳推理证明:函数 的值恒为正数。

直观图

总 课 题空间几何体总课时第4课时

分 课 题直观图画法分课时第4课时

目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.

重点难点用斜二侧画法画图.

引入新课

1.平行投影、中心投影、斜投影、正投影的有关概念.

2.空间图形的直观图的画法——斜二侧画法:

规则:

(1)____________________________________________________________.

(2)____________________________________________________________.

(3)____________________________________________________________.

(4)____________________________________________________________.

例题剖析

例1 画水平放置的正三角形的直观图.

例2 画棱长为 的'正方体的直观图.

巩固练习

1.在下列图形中,采用中心投影(透视)画法的是__________.

2.用斜二测画法画出下列水平放置的图形的直观图.

3.根据下面的三视图,画出相应的空间图形的直观图.

课堂小结

通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.

对数函数数学教案篇5

一、内容与解析

(一)内容:对数函数的性质

(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。

二、目标及解析

(一)教学目标:

1.掌握对数函数的性质并能简单应用

(二)解析:

(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。

三、问题诊断分析

在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.

四、教学支持条件分析

在本节课()的教学中,准备使用(),因为使用(),有利于().

五、教学过程

问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的'相关性质。

设计意图:

师生活动(小问题):

1.这些对数函数的解析式有什么共同特征?

2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。

3.通过这些函数图象请从函数值的分布角度总结相关性质

4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?

问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。

问题3.根据问题1、2填写下表

图象特征函数性质

a>10<a<1a>10<a<1

向y轴正负方向无限延伸函数的值域为R+

图象关于原点和y轴不对称非奇非偶函数

函数图象都在y轴右侧函数的定义域为R

函数图象都过定点(1,0)

自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数

在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1

在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1

[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成

例1.比较下列各组数中两个值的大小:

(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7

(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

变式训练:1. 比较下列各题中两个值的大小:

⑴ log106 log108 ⑵ log0.56 log0.54

⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

2.已知下列不等式,比较正数m,n 的大小:

(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n

(3) log a m < loga n (0 log a n (a>1)

例2.(1)若 且 ,求 的取值范围

(2)已知 ,求 的取值范围;

六、目标检测

1.比较 , , 的大小:

2.求下列各式中的x的值

(1)

演绎推理导学案

    642770