数学七年级上学期教案
推文网小编精心整理数学七年级上学期教案,希望这份数学七年级上学期教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多数学七年级上学期教案资料,在搜索框搜索
数学七年级上学期教案【篇1】
内容:整式的乘法—单项式乘以多项式 P58-59
课型:新授 时间:
学习目标:
1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:单项式乘以多项式的法则
学习难点:对法则的理解
学习过程
1.学习准备
1.叙述单项式乘以单项式的法则
2.计算
(1)(- a2b) ?(2ab)3=
(2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)
3、举例说明乘法分配律的应用。
2.合作探究
(一)独立思考,解决问题
1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的.面积是多少?
结合图形,完成填空。
算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3
天共修筑路面 m2.
算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2.
因此,有 = 。
3.你能用字母表示乘法分配律吗?
4.你能尝试单项式乘以多项式的法则吗?
(二)师生探究,合作交流
1、例3 计算:
(1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)
2、练一练
(1)5x(3x+4) (2) (5a2? a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2?x-1)
(4)(?a)(-2ab)+3a(ab-b-1))
(三)学习
对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?
(四)自我测试
1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。
2、判断题
(1)-2a(3a-4b) =-6a2-8ab ( )
(2) (3x2-xy-1) ? x =x3 -x2y-x ( )
(3)m2- (1- m) = m2- - m ( )
3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )
A. -1 B. 0 C. 1 D. 无法确定
4、计算(20__ 贺州中考)
(-2a)?( a3 -1) =
5、(3m)2(m2+mn-n2)=
(五)应用拓展
1、计算
(1)2a(9a2-2a+3)-(3a2) ?(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。
3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?
数学七年级上学期教案【篇2】
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:
知道什么是正数和负数,理解数0表示的量的意义。
教学难点:
理解负数,数0表示的量的意义。
教学方法:
师生互动与教师讲解相结合。
教具准备:
地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的.符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)
-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。
巩固提高:练习:课本P5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
数学七年级上学期教案【篇3】
学习目标:
1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。
2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。
3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。
重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。
学习过程:
一、课前预习导学
1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。
2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。
第1题
第2题
3、如图,若是中点,是中点,
(1)若,_________;
(2)若,_________。
二、课堂学习1、议一议:
(1)、在平面内画一个点,过这个点画直线,能画多少条?
(2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?
(3)、如果平面内有两个点,过这两个点画直线,又能画多少条?
总结:“过两点有______,并且____ ”
思考:过平面上三点中的每两点画直线,可画多少条?
2、做一做:已知两点a、b
(1)画线段ab(连接ab)
(2)延长线段ab到点c,使bc=ab
注意:我们把上图中的点b叫做线段ac的。
3、想一想:(1)如果点b是线段ac的.中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。
(2)如何用符号语言表述中点的概念?
总结:如果点b是线段ac的中点,那么;
如果,那么b是线段ac的中点。
4、知识运用:
例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。
练习:1、如图ab=8cm,点c是ab的中点,
点d是cb的中点,则ad=____cm
2、如图,下列说法,不能判断点c是线段ab的中点的是( )
a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab
3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。
三、课堂检测1.下列说法中,正确的是()
a.射线oa和射线ao表示同一条射线;b.延长直线ab;
c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.
2.如果要在墙上固定一根木条,你认为至少要钉子()
a.1根b.2根c.3根d.4根
3.如图,若是中点,是中点,
(1)若,,_________;(2)若,_________。
4.如图在平面内有a、b、c、d四点,按要求画图。
(1)画直线ab、射线bc、线段bd
(2)连结ac交bd于点o
(3)画射线cd并反向延长射线cd,
(4)连结ad并延长至点e,使ad=de。
四、课后作业
1、下列说法中正确的是()
a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点
c、经过平面内两点有且只有一条直线d、运动场上的300m赛跑,表示起点和终点之间的距离是300米
2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度
3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。
4、已知线段mn=7,点p在直线mn上,且mp=3,则np= 。
5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。
数学七年级上学期教案【篇4】
内容:整式的乘法—单项式乘以多项式 P58-59
课型:新授 时间:
学习目标:
1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:单项式乘以多项式的法则
学习难点:对法则的理解
学习过程
1.学习准备
1.叙述单项式乘以单项式的法则
2.计算
(1)(- a2b) ?(2ab)3=
(2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)
3、举例说明乘法分配律的应用。
2.合作探究
(一)独立思考,解决问题
1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?
结合图形,完成填空。
算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的.宽为bm,所以3
天共修筑路面 m2.
算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2.
因此,有 = 。
3.你能用字母表示乘法分配律吗?
4.你能尝试单项式乘以多项式的法则吗?
(二)师生探究,合作交流
1、例3 计算:
(1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)
2、练一练
(1)5x(3x+4) (2) (5a2? a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2?x-1)
(4)(?a)(-2ab)+3a(ab-b-1))
(三)学习
对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?
(四)自我测试
1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。
2、判断题
(1)-2a(3a-4b) =-6a2-8ab ( )
(2) (3x2-xy-1) ? x =x3 -x2y-x ( )
(3)m2- (1- m) = m2- - m ( )
3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )
A. -1 B. 0 C. 1 D. 无法确定
4、计算(20__ 贺州中考)
(-2a)?( a3 -1) =
5、(3m)2(m2+mn-n2)=
(五)应用拓展
1、计算
(1)2a(9a2-2a+3)-(3a2) ?(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。
3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?
数学七年级上学期教案【篇5】
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1、在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2、让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1、教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2、只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3、知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1、这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2、进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的`一半就是正方形的(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?()。
3、看到这儿,你发现什么规律了吗?
4、小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5、这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6、尝试练习
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1、感受极限。
(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的。得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)
2、利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3、课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。
4、举一反三。
其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)
【设计意图】让学生体会“数形结合”是数学学习中常用的方法。
三、练习巩固
1、基础练习。
(1)学生独立计算。
(2)全班交流反馈。
【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。
2、小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?
解决问题
(1)全班读题,学生独立思考。
(2)指名回答。
(3)根据学生回答情况,连线(课件演示)。
(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。
【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。
四、课堂总结
快下课了,请你来说说这节课有什么收获?
课后反思:
图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。