人教版7年级数学教案
推文网小编精心整理人教版7年级数学教案,希望这份人教版7年级数学教案优秀3篇能够帮助大家,给予大家在写作上的思路。更多人教版7年级数学教案资料,在搜索框搜索
人教版7年级数学教案精选篇1
【学习目标】
1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验.
2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较.
【学习重点】
利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小.
【学习难点】
两个负数大小的比较.
行为提示:创景设疑,帮助学生知道本节课学什么.
行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.
情景导入 生成问题
旧知回顾:
1.什么是绝对值?
答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值.
2.正数、负数、0的绝对值分别是什么?
答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
自学互研 生成能力
知识模块一 用数轴比较有理数的大小
阅读教材P14~P15的内容,回答下列问题:
问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大?
答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数.
方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大.
学习笔记:
行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.
典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是( A )
A.a>b>c B.a>c>b
C.b>c>a D.c>b>a
仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是( C )
A.-aC.a<-1<-a D.a<-a<-1
仿例2:把下列各数在数轴上表示出来,并用“<”连接各数.
-1.5,-0.5,-3.5,-5.
解:将这些数在数轴上表示出来,如图:
从数轴上可看出:-5<-3.5<-1.5<-0.5.
知识模块二 用法则比较有理数的大小
阅读教材P15的内容,回答下列问题:
问题:两个负数怎样比较大小?
答:可在数轴上比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较.
典例:比较大小:
(1)-2.1<1; (2)-3.2>-4.3;
(3)-12<13; (4)-14<0.
仿例1:比较-12、-13、14的大小结果正确的是( A )
A.-12<-13<14 B.-12<14<-13
C.14<-13<-12 D.-13<-12<14
仿例2:比较下列各对数的大小:
(1)-(-3)与|-2|;
解:∵-(-3)=3,|-2|=2,
∴-(-3)>|-2|; (2)-(-6)与|-6|.
解:∵-(-6)=6,|-6|=6,
∴-(-6)=|-6|.
变例:整数x满足|x|<3,则x=-2、-1、0、1、2,负整数x满足3<|x|≤6,则x=-4、-5、-6.
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 用数轴比较有理数的大小
知识模块二 用法则比较有理数的大小
检测反馈 达成目标
【当堂检测】见所赠光盘和学生用书
【课后检测】见学生用书
课后反思 查漏补缺
1.收获:________________________________________________________________________
2.困惑:________________________________________________________________________
人教版7年级数学教案精选篇2
教学目的:
(一)知识点目标:
1.了解正数和负数在实际生活中的应用。
2.深刻理解正数和负数是反映客观世界中具有相反意义的理。
3.进一步理解0的特殊意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2.熟练地用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:能用正、负数表示具有相反意义的量。
教学难点:进一步理解负数、数0表示的量的意义。
教学方法:小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1.认真想一想,你能用学过的知识解决下列问题吗?
某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径可以是 毫米,最小可以是 毫米。
2.下列说法中正确的( )
A、带有“一”的数是负数; B、0℃表示没有温度;
C、0既可以看作是正数,也可以看作是负数。
D、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1. 仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,
英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?
例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?
复习巩固:练习:课本P6 练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1 的第3、6、7、8题。
活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?
课后反思:————
人教版7年级数学教案精选篇3
教学目的
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
教学过程
一、复习
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间 速度=路程 / 时间
二、新授
例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?
画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。
三、巩固练习
教科书第17页练习1、2。
四、小结
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
四、作业
教科书习题6.3.2,第1至5题。